Answer:
B = E/c = 14.04T₁ = 11 pT
Explanation:
We know c = E/B where E = maximum electric field = 3.30 × 10⁻³ V/m, B = maximum magnetic field and c = speed of light
B = E/c also c = fλ = λ/T where λ = wavelength = 235 μm = 235 × 10⁻⁶ m and T = period
c = λ₁/T₁ = λ₂/T₂ T₂ = 2.8T₁ where λ₁,λ₂ are the initial and final wavelengths and T₁,T₂ are the initial and final periods.
T₁ = λ₁/c = 235 × 10⁻⁶ m/3 × 10⁸ m/s = 7.833 × 10⁻¹³ s = 0.7833 ps
T₂ = 2.8T₁ = 2.8 × 7.833 × 10⁻¹³ s = 21.93 × 10⁻¹³ s = 2.193 ps
λ₁/T₁ = λ₂/2.8T₁
λ₂ = 2.8λ₁ = 2.8 × 235 μm = 658 μm
c = λ₂/T₂ = 2.8λ₁/2.8T₁ = λ₁/T₁ , since the speed of light c is constant.
B = E/c = E/λ₁/T₁ = ET₁/λ₁
B = ET₁/λ₁ = 3.30 × 10⁻³ V/m × T₁/235 × 10⁻⁶ m = 14.04T₁ Tesla
B = 14.04 × 7.833 × 10⁻¹³ s = 10.99 × 10⁻¹² T ≅ 11 pT
Answer:
it's 10 you can see it goes by 2 and the others fo by 1 pretty simple
The object does not move.
Answer:
27000 Nm
Explanation:
The boom end at A is fixed and end at B is subjected to a 3kN force. Boom AB has length of 9m. The moment about A is the product of force 3kN (3000 N) at B and the moment arm of 9m
M = FL = 3000 * 9 = 27000 Nm
So the moment about A is 27000 Nm