I think you are looking for degrees.
Y = x/4 - <span>€
y = (1/4)x - </span><span>€
</span><span>
y = 0.25x - </span>€ comparing to y = mx + c
<span>m = slope = 0.25 or (1/4)</span>
Answer: 5
Step-by-step explanation: The median is the middle number in the data set when the data set is written from least to greatest.
Notice that our data set is already written from least to greatest.
1, 2, 2, 8, 9, 14
Notice that in this data set, there is no middle number directly because 2 and 8 fall directly in the middle. In this situation, we take the average of these two middle numbers and divide their sum by 2.
Since 2 and 8 are the numbers that appear in the middle, we add them.
2 + 8 gives us 10.
Now we divide 10 by 2 to get 5.
So the median of this data set is 5.
I have a solution here that has a slight change in given where instead of <span>(4, 32), it is (3, 18). However, since the solution has provided explanations on each process, step-by-step, I believe that by thoroughly analyzing it, you might just answer this problem on your own!
</span>
f(x) = 2x² ← this is the parabola
f(3) = 2 * 9 = 18 → the parabola passes through A (3 ; 18), so its tangent line too
f'(x) = 4x ← this is the derivative
…and the derivative is the slope of the tangent line to the curve at x
f'(3) = 4 * 3 = 12 ← this is the slope of the tangent line to the curve at x = 3
Equation of the tangent line
The typical equation of a line is: y = mx + b → where m: slope and where b: y-intercept
You know that the slope of the tangent line is 12.
The equation of the tangent line becomes: y = 12x + b
The tangent line passes through A (3 ; 18), so these coordinates must verify the equation of the tangent line.
y = 12x + b
b = y - 12x → you substitute x and y by the coordinates of the point A (3 ; 18)
b = 18 - 36 = - 18
→ The equation of the tangent line is: y = 12x - 18
Intersection between the tangent line to the curve and the x-axis: → when y = 0
y = 12x - 18 → when y = 0
12x - 18 = 0
12x = 18
x = 3/2
→ Point B (3/2 ; 0)
Intersection between the vertical line passes through the point A and the x-axis: → when x = 3
→ Point C (3 ; 0)
The equation of the vertical line is: x = 3
Area of the region bounded by the parabola y = 2x², the tangent line to this parabola at (3 ; 18), and the x-axis.
= (area of the region bounded by the parabola y = 2x² and the x-axis) - (area of the triangle ABC)
= [∫ (from 0 to 3) of the parabola] - [(xC - xB).(yA - yC)/2]
= [∫ (from 0 to 3) 2x².dx] - [(xC - xB).(yA - yC)/2]
= { [(2/3).x³] from 0 to 3 } - { [3 - (3/2)].(18 - 0)/2 }
= [(2/3) * 3³] - { [(6/2) - (3/2)] * 9 }
= [(2/3) * 27] - { [(3/2) * 9 }
= 18 - (27/2)
= (36/2) - (27/2)
= 9/2 square unit
Here we will use exponential form, which is

Initial value, y0 = 500
Double of 500 = 1000



Required equation is
