Answer:
C.) f(x) = 2x^2 + 4x + 4
Step-by-step explanation:
The equation of the parabola with vertex (h,k) is y=a(−h+x)^2+k.
Thus, the equation of the parabola is y=a(x+1)^2+2.
To find a, use the fact that the parabola passes through the point (2,20): 20=9a+2.
Solving this equation, we get that a=2.
Thus, the equation of the parabola is y=2(x+1)^2+2.
TO STANDARD FORM
= 2*(x^2+2x+1)+2
=(2x^2+4x+2)+2
= 2x^2+4x+2+2
= 2x^2+4x+4
Answer:
<h2>( 2 , 1 )</h2>
Step-by-step explanation:
2x - 2y = 2
<u>5</u><u>x</u><u> </u><u>+</u><u> </u><u>2</u><u>y</u><u> </u><u>=</u><u> </u><u>1</u><u>2</u>
7x = 14
<h3>
x = 2</h3>
(2x - 2y = 2)-5
<u>(5x + 2y = 12)</u><u>2</u>
-10x + 10y = -10
<u> 10x + 4y = 24</u>
14y = 14
<h3>
y = 1</h3>
x = 2
y = 1
(2,1)
Answer:
Step-by-step explanation:
b) a² - 1 + b(b - 2a) = a² -1 + b*b - b*2a {distributive property}
=a² - 1 + b² - 2ab
= (a² - 2ab + b² ) - 1
= (a - b)² - 1² {use identity x²-y²= (x+ y)(x -y)}
= (a - b + 1)(a -b +1)
b) 15 +8y + y² - 2x - x² = (y² + 8y + 15) - x² - 2x
= (y² + 5y + 3y + 15) - x(x + 2)
= [ y(y + 5) + 3(y +5)] - x(x + 2)
= [(y + 5)(y+3) ] - x(x +2)