1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vredina [299]
3 years ago
7

. The function s(l) = 1.34 √l models the maximum speed s in knots for a sailboat with length l in feet at the waterline. a. Use

the model to find the length of a sailboat with a maximum speed of 12 knots. Round to the nearest foot.
Mathematics
1 answer:
trasher [3.6K]3 years ago
5 0

Answer:

The length of the sailboat is 80 feet.

Step-by-step explanation:

The function  

s(l) = 1.34 \sqrt{l} ................ (1)  

models the maximum speed s in knots for a sailboat with length l in feet at the waterline.

So, using this model we have to find the length of a sailboat with a maximum speed of 12 knots.

Now, from equation (1) we get

12 = 1.34 \sqrt{l}

⇒ \sqrt{l} = 8.955

⇒ l = (8.955)^{2}  = 80 feet (Answer)

{The value is round to the nearest foot}

You might be interested in
Can someone please help me with #3?
kap26 [50]

Answer:


Step-by-step explanation:

First, make sure you know which section of the number line you want as 1 and 2. Next, put 0.25 not right at 0 but very close, then put 0.75 farther but not too much from 0.25. Then for the decimal 1.99 put that very close to where you marked the 2 but, not on the 2. Finally, put 2.03  very close to 2 but not exactly on the 2. Also, make sure that the number line is marked evenly.

7 0
3 years ago
find the height of the cylinder below whose volume is approximately 1000 cubic inches use 3.14 for pi round your answer to the n
gtnhenbr [62]

Answer:

h = 1000 / (3.14)(r²)

Step-by-step explanation:

Given in the question,

volume of cylinder = 1000 inches³

Formula to use

V = πr²h

where V = volume

           π = 3.14

           r = radius

           h = height

1000 = (3.14)(r²)(h)

h = 1000 / (3.14)(r²)

               

5 0
3 years ago
How do i do this? teacher didn’t help me much and i don’t understand this.
Mandarinka [93]
Answer:

1. 17.3 millions phones were sold

2. 2011

3. I don’t have answer for it yet
4 0
3 years ago
What is the average rate of change of f(x), represented by the table of values, over the interval [-3,4]
77julia77 [94]

Answer:

Average rate of change = 3

Step-by-step explanation:

  • We know that the average rate of change is basically a measure of the slope of the  secant line  in the closed interval [a, b].

here   a = -3 and b = 4

  • f(b) = f(4) = 27
  • f(a) = f(-3) = 6

⇒ Average rate of change = f(b) - f(a)  / b - a

                                            = (27 - 6) / (4 - (-3))

                                            = 21 / 7

                                            = 3

Therefore, Average rate of change = 3

6 0
3 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
Other questions:
  • What is the solution to the equation below?<br> -1+ 3x - 8 = 7
    14·1 answer
  • $.50 for a book that was only 10 days overdue.
    11·2 answers
  • Joanna buys a table and 2 chairs. She receives a 25% discount for being a preferred customer and then pays 6% sales tax on the d
    9·1 answer
  • Your math teacher asked you to solve the equation in the box.
    10·1 answer
  • Find the area of the structure.
    11·1 answer
  • The vertical motion of a mass attached to a spring is described by the given initial-value problem. 4x " + x' + x = 0, x(0) = 8,
    15·1 answer
  • In the United States, voters who are neither Democrat nor Republican are called Independent. It is believed that 11% of voters a
    6·1 answer
  • Help plzzzzzzzzzzzzzz ​
    13·1 answer
  • Is 1.572735 rational?
    8·2 answers
  • PLease help again for 100 points and if u want another 100 poinntns then answer my other questions
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!