Step-by-step explanation:
Enter a problem...
Algebra Examples
Popular Problems
Algebra
Expand using the Binomial Theorem (3x+2)^4
(3x+2)4(3x+2)4
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=n∑k=0nCk⋅(an−kbk)(a+b)n=∑k=0nnCk⋅(an-kbk).
4∑k=04!(4−k)!k!⋅(3x)4−k⋅(2)k∑k=044!(4-k)!k!⋅(3x)4-k⋅(2)k
Expand the summation.
4!(4−0)!0!⋅(3x)4−0⋅(2)0+4!(4−1)!1!⋅(3x)4−1⋅(2)+4!(4−2)!2!⋅(3x)4−2⋅(2)2+4!(4−3)!3!⋅(3x)4−3⋅(2)3+4!(4−4)!4!⋅(3x)4−4⋅(2)44!(4-0)!0!⋅(3x)4-0⋅(2)0+4!(4-1)!1!⋅(3x)4-1⋅(2)+4!(4-2)!2!⋅(3x)4-2⋅(2)2+4!(4-3)!3!⋅(3x)4-3⋅(2)3+4!(4-4)!4!⋅(3x)4-4⋅(2)4
Simplify the exponents for each term of the expansion.
1⋅(3x)4⋅(2)0+4
Hope this helps!
Answer:
y = 3x - 23
Step-by-step explanation:
y + 4 = 3(x - 9)
y + 4 = 3x - 27
y = 3x - 23
Answer:
There are 4 prime numbers from 1 to 10: 2, 3, 5, and 7. This means that there are 4 ways to choose the first outcome. There are 5 composite numbers from 1 to 10: 4, 6, 8, 9, and 10 (1 is just 1). So, you just multiply the two numbers together because each depends on each: 4 * 5 = 20 outcomes.
Step-by-step explanation:
please give me a brainliest answer
Answer:
The answer is 21
Step-by-step explanation:
This should help you