Answer:
1. 2.98m/s
2. 0.28m
Explanation:
The energy equation would work great in this scenario:
E=K+U. Since all of our energy comes from gravitational potential energy, and we are interested in finding the kinetic energy, all our mechanical energy must be in kinetic form, therefore:

We can use energy to find max height.
For energy, set the equation E=K+U as 437.7=(mass adult+mass senior)gh:

Answer:
Explanation:
Given that:
width b=100mm
depth h=150 mm
length L=2 m =200mm
point load P =500 N
Calculate moment of inertia

Point C is subjected to bending moment
Calculate the bending moment of point C
M = P x 1.5
= 500 x 1.5
= 750 N.m
M = 750 × 10³ N.mm
Calculate bending stress at point C

Calculate the first moment of area below point C

Now calculate shear stress at point C


Calculate the principal stress at point C
![\sigma_{1,2}=\frac{\sigma_x+\sigma_y}{2} \pm\sqrt{(\frac{\sigma_x-\sigma_y}{2} ) + (\tau)^2} \\\\=\frac{666.67+0}{2} \pm\sqrt{(\frac{666.67-0}{2} )^2 \pm(44.44)^2} \ [ \sigma_y=0]\\\\=333.33\pm336.28\\\\ \sigma_1=333.33+336.28\\=669.61KPa\\\\\sigma_2=333.33-336.28\\=-2.95KPa](https://tex.z-dn.net/?f=%5Csigma_%7B1%2C2%7D%3D%5Cfrac%7B%5Csigma_x%2B%5Csigma_y%7D%7B2%7D%20%5Cpm%5Csqrt%7B%28%5Cfrac%7B%5Csigma_x-%5Csigma_y%7D%7B2%7D%20%29%20%2B%20%28%5Ctau%29%5E2%7D%20%5C%5C%5C%5C%3D%5Cfrac%7B666.67%2B0%7D%7B2%7D%20%5Cpm%5Csqrt%7B%28%5Cfrac%7B666.67-0%7D%7B2%7D%20%29%5E2%20%5Cpm%2844.44%29%5E2%7D%20%5C%20%5B%20%5Csigma_y%3D0%5D%5C%5C%5C%5C%3D333.33%5Cpm336.28%5C%5C%5C%5C%20%5Csigma_1%3D333.33%2B336.28%5C%5C%3D669.61KPa%5C%5C%5C%5C%5Csigma_2%3D333.33-336.28%5C%5C%3D-2.95KPa)
Calculate the maximum shear stress at piont C

Answer:
Positron emission tomography. Positron emission tomography (PET) is an imaging technique that uses radioactive substances to visualize and measure metabolic processes in the body.
The answers to all three questions depend on WHICH branch
of Physics you're talking about . . . a piece of information you've
neglected to specify.