Here,
height at failure, h1 = 525 m,
upward acceleration, a = 2.25 m/s^2,
velocity = v m/s,
<span>
SO, </span>
<span>
v^2 = 2*a*h = 2*2.25*525 = 2362.5 </span>
Now, acceleration, g = 9.8 m/s^2,
<span>
SO, </span>
<span>
heigt, h1 = v^2/2g = 2362.5 / 2*9.8 = 120.54 meters </span>
Hence,
<span>
a) </span>
Total height = 525+120.54 = 645.54 meters
b)
<span>time, for h1, t = v/g = sqrt(2362.5)/9.8 = 4.96 sec
---------------------------------
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!</span>
here we can say that there is no external force on fisherman and dock
so here we will use momentum conservation theory
As per momentum conservation
initial momentum of fisherman + boat = final momentum of fisherman + boat

now we will have



so the speed of boat and fisherman will be 1.16 m/s
I assume that the ball is stationary (v=0) at point B, so its total energy is just potential energy, and it is equal to 7.35 J.
At point A, all this energy has converted into kinetic energy, which is:

And since K=7.35 J, we can find the velocity, v:
There’s nothing to answer to