A. Mass extinction is the answer
Answer:
Clues that can be used to determine whether the movement of solutes through the membrane is passive or active could be the molecule size, membrane potential, and the presence/absence of membrane protein.
Explanation:
Solutes transport through the cellular membrane depends on the solute size, membrane potential, and the presence/absence of integral membrane protein.
There are two types of transport: Active and passive.
- Passive transport: It does <u>not need energy</u>; it is driven by a chemical potential gradient. <u>Small molecules</u> with no charge are transported through the membrane in a gradient favor, from a high concentration region to a low concentration region. There are two types of passive transport: <em>By simple diffusion</em> (small molecules pass through the membrane by themselves) and by <em>facilitated diffusion</em> (molecules are helped by integral membrane proteins to pass through the membrane). In facilitated diffusion, the helping protein can be a <u>channel protein</u> (hydrophilic pores that allow the molecule to pass with no interaction) or a <u>carrier protein</u> (proteins with mobile parts that suffer modification as the molecule pass to the other side).
- Active transport: It <u>does need ATP energy</u> to pass the molecule through the membrane, as they have to <u>move against the electrochemical gradient</u>. This kind of transport is always mediated by a <u>carrier protein</u>. These proteins join with the molecules and suffer changes as they pass the solute to the other side of the membrane. An important example of this kind of transport is the sodium-potassium bomb.
I don’t know how to explain it but this might help
3 asteroid that hit earth
The plasma membrane of the enveloped alga cell serves as the source of the apicoplast's second outermost membrane.
<h3>Where did all chloroplasts come from?</h3>
Chloroplasts were first established in eukaryotes through an endosymbiotic relationship with a cyanobacterium; they later spread through the evolution of eukaryotic hosts and the subsequent engulfment of eukaryotic algae by formerly nonphotosynthetic eukaryotes.
<h3>How did eukaryotic cells develop mitochondria and chloroplasts?</h3>
Chloroplasts and mitochondria most likely developed from engulfed bacteria that once existed as autonomous organisms. An aerobic bacterium was eventually swallowed by a eukaryotic cell, which later established an endosymbiotic bond with the host eukaryote and gradually transformed into a mitochondrion.
To know more about cell visit:-
brainly.com/question/3142913
#SPJ4