1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
3 years ago
9

On an average day 3% of your employees are absent from work.You need 215 employees to operate all the machines.What is the minim

um number of employees you need in order to have enough employees to operate all the machines on an average day?
Mathematics
1 answer:
Bogdan [553]3 years ago
8 0
Let e be the minimum number of workers needed.

e(100-3)/100≥215

97e/100≥215

97e≥21500

e≥21500/97

e≥221.6

Since the number of employees must be an integer...

e≥222

So the minimum number of employees needed is 222. 
You might be interested in
PLS HELP WILL MAKE FIRST RIGHT ANSWER BRAINLIEST ​
Amanda [17]

Answer: -8 is the answer.

Step-by-step explanation:

according to the question:

{{(8+4)*5}/(-10)}-2

= {[12*5}/(-10)]-2

= [60/(-10)]-2

= -6-2 = -8

4 0
3 years ago
Read 2 more answers
Help me find the area of this circle
ch4aika [34]
The area would be approximately 153.94.

The area of a circle is pie multiplied by r^2. 

So you have the radius, which is r. Plug in r. Technically you have two numbers because pie equals approximately 3.14.

A=3.14(7)^2 
3 0
3 years ago
Here is a list of the normal monthly precipitation (in inches) for January for 20 different U.S. cities. 4.0, 1.0, 1.5, 1.6, 2.0
shutvik [7]

Answer:

minimum value = 1.0 , the lower quartile = 2.3, the middle value = 3.5.

the upper quartile = 3.95, the maximum value  = 7.3.

Step-by-step explanation:

Five Number Summary of any data consists basically of 5 data sets.

1) The minimum Value

2)The first (lower) quartile

3) The middle value (Median)

4) The third (upper) quartile

5)The maximum value

Now, the given data is  4.0, 1.0, 1.5, 1.6, 2.0, 2.2, 2.4, 2.7, 3.4, 3.4, 3.5, 3.6, 3.6, 3.7, 3.7, 3.9, 4.1, 5.8, 4.1, 7.3

Arrange it in the ascending order,

1.0, 1.5, 1.6, 2.0, 2.2, 2.4, 2.7, 3.4, 3.4, 3.5, 3.6, 3.6, 3.7, 3.7, 3.9, 4.0, 4.1, 4.1, 5.8, 7.3

Here,

1) The minimum Value  is 1.0

2)The first (lower) quartile  is  2.3.

3) The middle value (Median)  is 3.5.

4) The third (upper) quartile is  3.95.

5)The maximum value  is 7.3.

7 0
4 years ago
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Read 2 more answers
PLEASE HELP!!
otez555 [7]

Answer:

3x-y=6?

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • If m∠c=11x+85/3 and x=13 then what type of angle is c please help me with this
    7·1 answer
  • Farmers often sell fruits and vegetables at farmers’ markets during the summer. Each tomato stand at the Bentonville farmers’ ma
    10·1 answer
  • What is the volume of a cone that has a height of 7 mm and a radius of 3 mm?
    7·1 answer
  • Angelina has five cakes. She wants to cut them into 2/5 pieces. How many pieces will she be able to cut?
    12·2 answers
  • 31.<br> 4xº<br> (3y + 2)°<br> 52°<br> What are the values of x and y
    9·1 answer
  • Angle 1 and 2 are vertical angles. If the measure of angle 2 is 105 degrees, find the measure of angle 1.
    12·2 answers
  • Help asap schools almost done pls help me
    12·1 answer
  • John is 1.6 m tall. robbin is 156 cm tall what is the ratio of johns' height to robbins height?
    12·1 answer
  • Help please 15 points
    7·1 answer
  • What is the opposite of division
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!