Answer:
x=2/5
Step-by-step explanation:
Answer:
21
Step-by-step explanation:
I hope this helps!
Cuberoot(10)^4 is the answer
Answer:
points G and I have coordinates (6,4) and (3,2)
Use Pythagorean theorem to calculate the straight line distance between points G and I
points G and I have coordinates (6,4) and (3,2)
Draw a line parallel to y axis passing through G
Draw a line parallel to x axis passing through I
Intersection point K ( 6 , 2)
IK = 6 - 3 = 3
GK = 4 -2 = 2
ΔIKG right angled triangle
Pythagoras' theorem: square on the hypotenuse of a right-angled triangle is equal to the sum of the squares of the other two perpendicular sides.
GI² = IK² + GK²
=> GI² = 3² + 2²
=> GI² = 13
=> GI = √13
using distance formula
G (6,4) and I (3,2)
= √(6 - 3)² + (4 - 2)²
= √3² + 2²
= √9 + 4
= √13
Step-by-step explanation: