Oxygen ... The biogeochemical cycle of phosphorus differs from the cycles of carbon and nit.
Explanation: The water cycle is also known as the hydrological cycle. It describes how water moves on, above, or just below the surface of our planet. Water molecules move between various locations - such as rivers, oceans and the atmosphere - by specific processes. Water can change state. Nitrogen compounds found in cells include proteins. Nitrogen from the air is converted into soluble ions that plant roots can absorb. It forms part of nitrogen compounds in the plants, and is then passed from one organism to the next. It is returned to the atmosphere as nitrogen gas. This is the nitrogen cycle. The carbon-oxygen cycle is the process by which plants use carbon dioxide for respiration during photosynthesis and produce oxygen. During this process, carbon dioxide becomes part of the plant, and when the plant dies in a carbon-rich state it is possible for it to become a fossil fuel.
There are number of endemic species, because island isolation promotes allopatric speciation and the latter occurs when species become separated from each other to the level that prevents genetic recombination.
Insect populations can develop resistance to insecticides over time. The evolution of resistance is associated with an increase in the frequency of adaptive genes in the population.
- In the case above described it is expected that a few mosquitoes in the population were resistant to DDT before it was ever used (Option a is correct).
- Dichlorodiphenyltrichloroethane (DDT) is a pesticide used in agriculture.
- After exposure to DDT, those individuals in the mosquito population that didn't carry gene variants (i.e., alleles) associated with the resistance to this pesticide died.
- Subsequently, insects having adaptive alleles associated with DDT resistance survived and reproduced, thereby increasing the frequency of adaptive genes/alleles in the population.
Learn more in:
brainly.com/question/6389591?referrer=searchResults
So we know that to transport materials in or out of the cell, we need to have access to both the inside and outside of the cell. This would require that the protein be a transmembrane protein that reaches both the inside and the outside of the cell.
So in this case, let's look at pore proteins. These are proteins that cross a membrane and act as a pore for the materials that need to cross the membrane.
One example of a pore protein is an aquaporin. These proteins aid in the transport of water into or out of a cell.
Therefore, the answer to your question is: A) Pore proteins.