Answer:
Explanation:
The high clouds are cirrus,
The middle clouds are cumulus,
And the low clouds is stratus.
Hope this helps :)
Atoms come together to form molecules because of their electrons. Electrons can join (or bond) atoms together in two main ways. When two atoms share electrons between them, they are locked together (bonded) by that sharing. These are called covalent bonds
Red blood cell is shaped as a biconcave discs, this shape allows them to squeeze through small capillaries.
The biconcave shape of the cell allows oxygen exchange at a constant rate over the largest possible area. The biconcave shape increases the cell's surface area compared to a flat disk of the same size. The greater surface area makes it easier for gases to move into and out of the red blood cell.
The biconcave shape provides a large surface area compared to the volume of the red blood cell, allowing diffusion to happen efficiently. This shape optimizes the ratio of surface area to volume, facilitating gas exchange. It also enables them to fold up as they move through narrow blood vessels.
To learn more about biconcave discs ,here
brainly.com/question/8193368
#SPJ4
Answer:
Semi-conservative replication
Explanation:
After the double-helix discovery of Watson and Crick, there were three possible models about the DNI replication:
- The Conservative model stated that the two strands of DNI together were the template of another new molecule. The final product was the original double-stranded molecule and the new molecule.
- The semi-conservative model stated that the original DNI molecule separated into two strands, and each of them served as a template for the synthesis of a new complementary strand. The replication product would be two double-stranded DNA molecules, each carrying an original strand a new one.
- The Dispersive moles stated that the replication product would be two molecules made by a mixture of segments of the original and the new molecules.
Meselson and Stahl joined to discover which of the models was the correct one. To do it they used E. coli and Nitrogen isotopes.
- First, they extracted DNI from bacteria grown in a medium with N¹⁴ and got its density band by centrifugation.
- Then they grew bacteria in a medium with N¹⁵, extracted their DNI molecules, centrifugated them, and got the density band, which was heavier than the firsts ones.
- The researchers then transferred bacteria grown in medium with N¹⁵ to a medium with N¹⁴, and they allowed only one replication process to occur. DNI was extracted and centrifugated again, and a new band appeared. This band was an intermediate form between bands of DNI-N¹⁵ and DNI-N¹⁴.
This event <em>eliminated the conservative model</em>. If this model were correct, the expected result would be to get two bands: one corresponding to the density DNI-N¹⁵ and the other corresponding to the density DNI-N¹⁴.
- Bacteria grown in a medium with N¹⁵ and then transferred to a medium with N¹⁴ were finally allowed to replicate twice. Their DNI was extracted and centrifugated. The result was two bands: one of them coincided with the intermediate band, and the other one with the DNI-N¹⁴.
<u>This result was conclusive</u> because if the dispersal model were correct, these two bands should not appear, as all the DNI strands would have part of the original molecule.
With this experiment, Meselson and Stahl proved that the correct replication model was the semi-conservative one.