For every 33 green triangles, we have 77 yellow triangles.
So using the original ratio 33:77 we can simplify this by dividing both sides by 11 so that we get the ratio 3:7 so for every 3 green triangles we have 7 yellow triangles.
Answer:
I think that the answer is 3/25
Answer: To know whether a radical expression is in simplest form or not you should put the numbers and letters inside the radical in terms of prime factors. Then, the radical expression is in the simplest form if all the numbers and letters inside the radical are prime factors with a power less than the index of the radical
Explanation:
Any prime factor raised to a power greater than the index of the root can be simplified and any factor raised to a power less than the index of the root cannot be simplified
For example simplify the following radical in its simplest form:
![\sqrt[5]{3645 a^8b^7c^3}](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7B3645%20a%5E8b%5E7c%5E3%7D%20)
1) Factor 3645 in its prime factors: 3645 = 3^6 * 5
2) Since the powr of 3 is 6, and 6 can be divided by the index of the root, 5, you can simplify in this way:
- 6 ÷ 5 = 1 with reminder 1, so 3^1 leaves the radical and 3^1 stays in the radical
3) since the factor 5 has power 1 it can not leave the radical
4) the power of a is 8, then:
8 ÷ 5 = 1 with reminder 3 => a^1 leaves the radical and a^3 stays inside the radical.
5) the power of b is 7, then:
7 ÷ 5 = 1 with reminder 2 => b^1 leaves the radical and b^2 stays inside the radical
6) the power of c is 3. Since 3 is less than 5 (the index of the radical) c^3 stays inside the radical.
7) the expression simplified to its simplest form is
![3ab \sqrt[5]{3.5.a^3b^2c^3}](https://tex.z-dn.net/?f=3ab%20%5Csqrt%5B5%5D%7B3.5.a%5E3b%5E2c%5E3%7D%20)
And you know
it cannot be further simplified because all the numbers and letters inside the radical are prime factors with a power less than the index of the radical.
Answer:
a = 11.71 ; b = 15.56
Step-by-step explanation:
For this problem, we need two things. The law of sines, and the sum of the interior angles of a triangle.
The law of sines is simply:
sin(A)/a = sin(B)/b = sin(C)/c
And the sum of interior angles of a triangle is 180.
45 + 110 + <C = 180
<C = 25
We can find the sides by simply applying the law of sines.
length b
7/sin(25) = b/sin(110)
b = 7sin(110)/sin(25)
b = 15.56
length a
7/sin(25) = a/sin(45)
a = 7sin(45)/sin(25)
a = 11.71