Let us assume the cost of 1 apple = x dollars
Let us also assume the cost of 1 pear = y dollars
Then we can form two equations from the details given in the question. Based on those details the required answer to the question can be easily deduced.
3x + 8y = 14.50
And
6x + 4y = 14
Dividing both sides of the equation by 2 we get
3x + 2y = 7
2y = 7 - 3x
y = (7 - 3x)/2
Putting the value of y from the second equation in the first equation we get
3x + 8y = 14.50
3x + 8[(7 - 3x)/2] = 14.50
3x + 4 (7 - 3x) = 14.50
3x + 28 - 12x = 14.50
- 9x = 14.50 - 28
- 9x = - 13.5
9x = 13.5
x = 13.5/9
= 1.5
Putting the value of x in the second equation we get
6x + 4y = 14
(6 * 1.5) + 4y = 14
9 + 4y = 14
4y = 14 - 9
4y = 5
y = 5/4
= 1.25
So we can find from the above deduction that the cost of 1 apple is 1.5 dollars and the cost of 1 pear is 1.25 dollars
Then
Cost of 2 apples = 2 * 1.5 dollars
= 3.0 dollars
So the cost of 2 apples is $3 and the cost of 1 pear is $1.25.
Answer:
Table B
Step-by-step explanation:
correct on edge :)
Answer:
a) The probability that this whole shipment will be accepted is 30%.
b) Many of the shipments with this rate of defective aspirin tablets will be rejected.
Step-by-step explanation:
We have a shipment of 3000 aspirin tablets, with a 5% rate of defects.
We select a sample of size 48 and test for defectives.
If more than one aspirin is defective, the batch is rejected.
The amount of defective aspirin tablets X can be modeled as a binomial distribution random variable, with p=0.55 and n=48
We have to calculate the probabilities that X is equal or less than 1: P(X≤1).

Answer:
2^6
64
Step-by-step explanation: