Function P: y intercept of 5 (0,5), no slope
Function Q: y=- \frac{1}{3} x+4, m=- \frac{1}{3}
A: Both functions do NOT have the same slope.
B: Both functions do NOT have negative slope.
C: Functions will NOT have same input when y=0
D. The functions will have different outputs when x=0 (Function P: (0, 5) and Function Q: (0, 4)
A because two negatives make a positive
The solution exist for the given equation are
x=-2
and
x=11/3
Answer:
The answers are that a = -5 and b = 1
Step-by-step explanation:
In order to find A and B, we first need to find the equation of the line. We can do this by using two ordered pairs and the slope formula. For the purpose of this activity, I'l use (0, 5) and (-3, 11)
m(slope) = (y2 - y1)/(x2 - x1)
m = (11 - 5)/(-3 - 0)
m = 6/-3
m = -2
Now that we have this we can model this using point-slope form.
y - y1 = m(x - x1)
y - 5 = -2(x - 0)
y - 5 = -2x
y = -2x + 5
Now that we have the modeled equation we can use the ordered pair (a, 15) to solve for a.
y = -2x + 5
15 = -2(a) + 5
10 = -2a
-5 = a
And we can also solve for b using the ordered pair (2, b)
y = -2x + 5
b = -2(2) + 5
b = -4 + 5
b = 1
Answer:
The slope is the change in Y over the change in X.
m = (0 - 3) / (0 - (-4)) = -3 / +4 = -0.75