Answer:
<u>Passive transport</u>: It does not need any energy to occur. Happens in favor of an electrochemical gradient. Simple diffusion and facilitated diffusion are kinds of passive transport.
<u>Simple diffusion</u>: molecules freely moves through the membrane.
<u>Facilitated diffusion</u>: molecules are carried through the membrane by channel proteins or carrier proteins.
<u>Active transport</u> needs energy, which can be taken from the ATP molecule (<u>Primary active transport</u>) or from a membrane electrical potential (<u>Secondary active transport</u>).
Explanation:
- <u>Diffusion</u>: This is a pathway for some <em>small polar hydrophilic molecules</em> that can<em> freely move through the membrane</em>. Membrane´s permeability <em>depends</em> on the <em>size of the molecule</em>, the bigger the molecule is, the less capacity to cross the membrane it has. Diffusion is a very slow process and to be efficient requires short distances and <em>pronounced concentration gradients</em>. An example of diffusion is <em>osmosis</em> where water is the transported molecule.
- <u>Facilitated diffusion</u>: Refers to the transport of <em>hydrophilic molecules</em> that <em>are not able to freely cross the membrane</em>. <em>Channel protein</em> and many <em>carrier proteins</em> are in charge of this <em>passive transport</em>. If uncharged molecules need to be carried this process depends on <em>concentration gradients</em> and molecules are transported from a higher concentration side to a lower concentration side. If ions need to be transported this process depends on an <em>electrochemical gradient</em>. The <em>glucose</em> is an example of a hydrophilic protein that gets into the cell by facilitated diffusion.
<em>Simple diffusion</em> and <em>facilitated diffusion</em> are <u>passive transport</u> processes because the cell <u><em>does not need any energy</em></u> to make it happen.
- <u>Active transport</u> occurs <em>against the electrochemical gradient</em>, so <u><em>it does need energy to happen</em></u>. Molecules go from a high concentration side to a lower concentration side. This process is always in charge of <em>carrier proteins</em>. In <u>primary active transport</u> the <em>energy</em> needed <em>comes from</em> the <em>ATP</em> molecule. An example of primary active transport is the <em>Na-K bomb</em>. In <u>secondary active transport</u>, the<em> energy comes from</em> the <em>membrane electric potential</em>. Examples of secondary active transport are the carriage of <em>Na, K, Mg metallic ions</em>.
Answer: Sex evolved as an extremely efficient mechanism for producing variation, and this had the major advantage of enabling organisms to adapt to changing environments. Sex did, however, come with a cost. In reproducing asexually, no time nor energy needs to be expended in choosing a mate.
Explanation: no kizzac lemme get brainliest please?
Answer:
Goats are more profitable than sheep. There are many factors that contribute to a farmer's profits. These factors include the price that goats or sheep sell for at market. ... Lastly, goats and sheep both produce multiple products that can be marketed including wool, milk, and meat.
Explanation:
Answer:
The correct answer is "9 cycles".
Explanation:
The minimum number of cycles necessary to replicate a fragment of DNA over 500 times is 9 cycles. In Polymerase Chain Reaction (PCR) method, the fragments of DNA are doubled in each cycle. This means that after "n" cycles, the total number of fragments is given by the equation 2^n. In this case, after 9 cycles a total of 512 DNA fragments will be obtained, because 2^9 is equal to 512.
Answer:
Glycolysis produces pyruvate, ATP, and NADPH by oxidizing glucose. During cellular respiration, glucose combines with oxygen to form carbon dioxide, water, and ATP.
Explanation: