1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddika [18.5K]
3 years ago
8

A storage pod has a rectangular floor that measures 21 feet by 9 feet and a flat ceiling that is 7 feet above the floor. Find th

e area of the floor and the volume of the pod.
Mathematics
1 answer:
mario62 [17]3 years ago
4 0

Answer:

  • area: 189 ft²
  • volume: 1323 ft³

Step-by-step explanation:

The area of the rectangular floor is the product of its length and width:

  A = LW = (21 ft)(9 ft) = 189 ft²

The volume of the pod is the product of that floor area and the height:

  V = Bh = (189 ft²)(7 ft) = 1323 ft³

The area of the floor is 189 ft²; the volume of the pod is 1323 ft³.

You might be interested in
What is 10 2/3 + 3 1/3 and explain your answer
barxatty [35]

Step-by-step explanation:

10 2/3 + 3 1/3 = 10 + 3 + 2/3 + 1/3 = 13 + 3/3 = 13 + 1 = 14

7 0
4 years ago
Polygon CCC has an area of 404040 square units. Kennan drew a scaled version of Polygon CCC using a scale factor of \dfrac12 2 1
dsp73
The area of polygon D is given by:
 Ad = k ^ 2 * Ac
 Where,
 k: scale factor
 Ac: area of polygon C
 Substituting the values we have:
 Ad = (1/2) ^ 2 * (40)
 Ad = (1/4) * (40)
 Ad = 10 square units
 Answer:
 
the area of Polygon D is:
 
Ad = 10 square units
7 0
4 years ago
Read 2 more answers
HELP ASAP I NEED THIS DONE IM IN A TIMED TEST
Pavlova-9 [17]
+GO TO DA MOON +* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOO+GO TO D +GO TO DA MOON +* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOO+GO TO D +GO TO DA MOON +* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOO+GO TO D. +GO TO DA MOON +* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOO+GO TO D +GO TO DA MOON +* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOO+GO TO D +GO TO DA MOON +* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOO+GO TO D +GO TO DA MOON +* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOON+* GO TO DA MOO+GO TO D
3 0
3 years ago
Read 2 more answers
8
Kruka [31]

Answer:

Y=-1/4x-4

Step-by-step explanation:

To find the slope, you would need to use the equation y2-y1/x2-x1 by the coordinates. You would get -3-(-2)/-4-(-8). This would result in -1/4. Now that you have your slope, you plug in one of the coordinates. If you used  (-8,-2), you would get -2=-8(-1/4)+b. Simplify the equation to get -2=2+b, which simplifies to -4=b, and b is the y intercept.

6 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Other questions:
  • Fred the clown can create 20 animal balloons every 15 minutes. How many can he make in 6 minutes?
    8·2 answers
  • Mr. Nanez collects quitars. He has 4 black guitars, 2 white quitars and 9 brown quitars, What is is ratio of black guitars to al
    14·1 answer
  • Please help!
    7·1 answer
  • Add. PLS HELP I WILL GIVE BRAINLIEST PLUS EXTRA POINTS
    6·1 answer
  • A restaurant uses 4375 pounds of cheese for every 8 3/4 pizzas atvrgis rate how many pounds of cheese are used per pizza
    10·2 answers
  • URGENT GEOMETRY MATH HELP 98 POINTS!!
    11·2 answers
  • Given that ABCD is a rhombus, what is the value of x?
    15·1 answer
  • On a baseball team, there are infielders and outfielders. Some players are great hitters, and some players are not great hitters
    8·1 answer
  • Three times a number minus ten is equal to the sum of twice the same number and five.
    15·1 answer
  • Ty
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!