In 1992: t=0 and A=169 million
In 1999: t=7 and P= 174 million
Solve for k: blah blah blah
In 2010: t=18
The answer is : 182 million (trust me)
Tan x = opp/adj
For angle C, opp = 4, and 3 = adj, so
tan C = 4/3
Answer: False
Answer:
4.485
Step-by-step explanation:
[divide 17 by 4]
[ ]
Now, Midpoint of 4.25 and 4.472 =
Number between 4.25 and 4.472 =4.485
Or number between and is 4.485.
Answer:If you are using a calculator, simply enter 770×100÷70, which will give you the answer.
Step-by-step explanation:
Answer:
Please read the complete procedure below:
Step-by-step explanation:
You have the following initial value problem:

a) The algebraic equation obtain by using the Laplace transform is:
![L[y']+2L[y]=4L[t]\\\\L[y']=sY(s)-y(0)\ \ \ \ (1)\\\\L[t]=\frac{1}{s^2}\ \ \ \ \ (2)\\\\](https://tex.z-dn.net/?f=L%5By%27%5D%2B2L%5By%5D%3D4L%5Bt%5D%5C%5C%5C%5CL%5By%27%5D%3DsY%28s%29-y%280%29%5C%20%5C%20%5C%20%5C%20%281%29%5C%5C%5C%5CL%5Bt%5D%3D%5Cfrac%7B1%7D%7Bs%5E2%7D%5C%20%5C%20%5C%20%5C%20%5C%20%282%29%5C%5C%5C%5C)
next, you replace (1) and (2):
(this is the algebraic equation)
b)
(this is the solution for Y(s))
c)
![y(t)=L^{-1}Y(s)=L^{-1}[\frac{4}{s^2(s+2)}+\frac{8}{s+2}]\\\\=L^{-1}[\frac{4}{s^2(s+2)}]+L^{-1}[\frac{8}{s+2}]\\\\=L^{-1}[\frac{4}{s^2(s+2)}]+8e^{-2t}](https://tex.z-dn.net/?f=y%28t%29%3DL%5E%7B-1%7DY%28s%29%3DL%5E%7B-1%7D%5B%5Cfrac%7B4%7D%7Bs%5E2%28s%2B2%29%7D%2B%5Cfrac%7B8%7D%7Bs%2B2%7D%5D%5C%5C%5C%5C%3DL%5E%7B-1%7D%5B%5Cfrac%7B4%7D%7Bs%5E2%28s%2B2%29%7D%5D%2BL%5E%7B-1%7D%5B%5Cfrac%7B8%7D%7Bs%2B2%7D%5D%5C%5C%5C%5C%3DL%5E%7B-1%7D%5B%5Cfrac%7B4%7D%7Bs%5E2%28s%2B2%29%7D%5D%2B8e%5E%7B-2t%7D)
To find the inverse Laplace transform of the first term you use partial fractions:

Thus, you have:
(this is the solution to the differential equation)