
Differentiate both sides, treating
as a function of
. Let's take it one term at a time.
Power, product and chain rules:



Product and chain rules:




Product and chain rules:




The derivative of 0 is, of course, 0. So we have, upon differentiating everything,

Isolate the derivative, and solve for it:


(See comment below; all the 6s should be 2s)
We can simplify this a bit by multiplying the numerator and denominator by
to get rid of that fraction in the denominator.

Answer:
193.2
Step-by-step explanation:
27.6x7 
Step-by-step explanation:
<h3>Appropriate Question :-</h3>
Find the limit
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)

Given expression is
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)
On substituting directly x = 1, we get,


which is indeterminant form.
Consider again,
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)
can be rewritten as
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20%7Bx%7D%5E%7B2%7D%20-%203x%20%2B%202%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20%7Bx%7D%5E%7B2%7D%20-%202x%20-%20x%20%2B%202%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20x%28x%20-%202%29%20-%201%28x%20-%202%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%7B%28x%20-%202%29%7D%5E%7B2%7D%20-%201%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%202%20-%201%29%28x%20-%202%20%2B%201%29%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%203%29%28x%20-%201%29%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%203%29%7D%7Bx%28x%20-%202%29%7D%5Cright%5D)



Hence,
![\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}](https://tex.z-dn.net/?f=%5Crm%5Cimplies%20%5C%3A%5Cboxed%7B%20%5Crm%7B%20%5C%3A%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D%20%3D%202%20%5C%3A%20%7D%7D)

Buying books, your dorm and maybe a ride to get to school
Let the number be y
The statement can be interpreted as
85% of y = 646