4(x+1)=3(x+2)
4x+4=3x+6
4x-3x=6-4
X=6-4
Answer is X=2
--------------------------------------------------------------------
Define x :
--------------------------------------------------------------------
Let the smallest number be x.
First number = x
Second Number = x + 1
Third Number = x + 2
--------------------------------------------------------------------
Construct equation :
--------------------------------------------------------------------
x(x+2) - (x+1) = 7(x+2) + 1
--------------------------------------------------------------------
Solve x :
--------------------------------------------------------------------
x(x + 2) - (x + 1) = 7(x + 2) + 1
x² + 2x - x - 1 = 7x + 14 + 1
x²- 6x - 16 = 0
<span>(x+2)(x-8) = 0
</span>x = -2 or x = 8
Since x is a positive integer, it cannot be negative.
⇒x = 8
--------------------------------------------------------------------------
Answer: The three numbers are 8, 9 and 10.
--------------------------------------------------------------------------
For this case we have that each student takes 8 \ frac {3} {4} minutes to perform and play 3 songs. Then, we convert the mixed number to a fraction:

Thus, each student takes
minutes.
If there are 9 students in the recital then we have:
minutes.
Thus, the recital lasts at least 78.75 minutes.
Answer:
The recital lasts at least 78.75 minutes.
(2x + 10)(x - 9)
2x(x - 9) + 10(x - 9)
2x(x) - 2x(9) + 10(x) - 10(9)
2x² - 18x + 10x - 90
2x² - 8x - 90
Answer:
46 housewives read all three magazines.
Step-by-step explanation:
Given:
n(A) = 150
n(B) = 200
n(C) = 156
n(A∩B) = 48
n(B∩C) = 60
n(A∩C) = 52
n(A∪B∪C) = 300
so we know the relation as:
n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)
∴ n(A∩B∩C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) - n(A∪B∪C)
= 150 + 200+ 156 - 48 - 60 - 52 - 300
= 46
Hence the number of housewives that had read all three magazine is 46.