1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
2 years ago
10

**Spam answers will not be tolerated**

Mathematics
1 answer:
Morgarella [4.7K]2 years ago
5 0

Answer:

f'(x)=-\frac{2}{x^\frac{3}{2}}

Step-by-step explanation:

So we have the function:

f(x)=\frac{4}{\sqrt x}

And we want to find the derivative using the limit process.

The definition of a derivative as a limit is:

\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}

Therefore, our derivative would be:

\lim_{h \to 0}\frac{\frac{4}{\sqrt{x+h}}-\frac{4}{\sqrt x}}{h}

First of all, let's factor out a 4 from the numerator and place it in front of our limit:

=\lim_{h \to 0}\frac{4(\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt x})}{h}

Place the 4 in front:

=4\lim_{h \to 0}\frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt x}}{h}

Now, let's multiply everything by (√(x+h)(√(x))) to get rid of the fractions in the denominator. Therefore:

=4\lim_{h \to 0}\frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt x}}{h}(\frac{\sqrt{x+h}\sqrt x}{\sqrt{x+h}\sqrt x})

Distribute:

=4\lim_{h \to 0}\frac{({\sqrt{x+h}\sqrt x})\frac{1}{\sqrt{x+h}}-(\sqrt{x+h}\sqrt x)\frac{1}{\sqrt x}}{h({\sqrt{x+h}\sqrt x})}

Simplify: For the first term on the left, the √(x+h) cancels. For the term on the right, the (√(x)) cancel. Thus:

=4 \lim_{h\to 0}\frac{\sqrt x-(\sqrt{x+h})}{h(\sqrt{x+h}\sqrt{x}) }

Now, multiply both sides by the conjugate of the numerator. In other words, multiply by (√x + √(x+h)). Thus:

= 4\lim_{h\to 0}\frac{\sqrt x-(\sqrt{x+h})}{h(\sqrt{x+h}\sqrt{x}) }(\frac{\sqrt x +\sqrt{x+h})}{\sqrt x +\sqrt{x+h})}

The numerator will use the difference of two squares. Thus:

=4 \lim_{h \to 0} \frac{x-(x+h)}{h(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}

Simplify the numerator:

=4 \lim_{h \to 0} \frac{x-x-h}{h(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}\\=4 \lim_{h \to 0} \frac{-h}{h(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}

Both the numerator and denominator have a h. Cancel them:

=4 \lim_{h \to 0} \frac{-1}{(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}

Now, substitute 0 for h. So:

=4 ( \frac{-1}{(\sqrt{x+0}\sqrt x)(\sqrt x+\sqrt{x+0})})

Simplify:

=4( \frac{-1}{(\sqrt{x}\sqrt x)(\sqrt x+\sqrt{x})})

(√x)(√x) is just x. (√x)+(√x) is just 2(√x). Therefore:

=4( \frac{-1}{(x)(2\sqrt{x})})

Multiply across:

= \frac{-4}{(2x\sqrt{x})}

Reduce. Change √x to x^(1/2). So:

=-\frac{2}{x(x^{\frac{1}{2}})}

Add the exponents:

=-\frac{2}{x^\frac{3}{2}}

And we're done!

f(x)=\frac{4}{\sqrt x}\\f'(x)=-\frac{2}{x^\frac{3}{2}}

You might be interested in
ASPPPPPP!!!
KiRa [710]
The answer should be b
The other one should be 8
3 0
3 years ago
HELP I NEED THIS RN ITS DUE IN LIKE 5 MINS A CARTON CAN HOLD 1,000 UNIT CUBES THAT MESURE 1 INCH BY 1 INCH DESCRIBE THE DIMENSIO
sp2606 [1]

Answer:

the dimensions would b 10 10 and 10

7 0
2 years ago
Read 2 more answers
PLEASE HELP
alina1380 [7]

When the dice is rolled 14 times then from the given data the probability of 1,2,3,4,5,6 is 3/14,1/14,4/14,1/14,3/14,2,14.

Given Roll of dice and outcomes from 1 to 14 is 1,3,5,4,5,3,3,1,3,5,6,1,6,2.

From the given collected data we can find out number of times each number came when the dice is rolled.

Number of times 1 came=3

Number of times 2 came=1

Number of times 3 came=4

Number of times 4 came=1

Number of times 5 came=3

Number of times 6 came=2

The probabilities are in fraction form:

P(1)=3/14

P(2)=1/14

P(3)=4/14

P(4)=1/14

P(5)=3/14

P(6)=2/14

The probabilities in decimal form:

P(1)=0.21

P(2)=0.07

P(3)=0.28

P(4)=0.07

P(5)=0.21

P(6)=0.14

The probabilities in percentage:

P(1)=21%

P(2)=7%

P(3)=28%

P(4)=7%

P(5)=21%

P(6)=14%

Hence the probabilities are 3/14,1/14,4/14,1/14,3/14,2,14.

Learn more about probabilities here brainly.com/question/24756209

#SPJ10

5 0
1 year ago
Please say yes or no and tell me the answer
Sauron [17]

Answer:

yes 48 3/5

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
Solve the equations by substitution method: A. 2x-y-3=0 and 3x+4y=65.​
PSYCHO15rus [73]

Step-by-step explanation:

\sf 2x-y-3=0\dots \dots (1)

\sf 3x+4y=65 \\ \implies\sf 3x+4y-65=0 \dots\dots(2)

  • from eq (1)

{:}\longrightarrow\sf 2x-y-3=0

{:}\longrightarrow\sf 2x-3=y

{:}\longrightarrow\sf y=2x-3 \dots\dots(3)

  • Substitute the value in eq(2)

{:}\longrightarrow\sf 3x+4y-65=0

{:}\longrightarrow\sf 3x +4 (2x-3)-65=0

{:}\longrightarrow\sf 3x+8x-12-65=0

{:}\longrightarrow\sf 11x-77=0

{:}\longrightarrow\sf 11x=77

{:}\longrightarrow\sf x={\dfrac {77}{11}}

{:}\longrightarrow\sf x=7

  • Substitute the value in eq (3)

{:}\longrightarrow\sf y=2x-3

{:}\longrightarrow\sf y=2 (7)-3

{:}\longrightarrow\sf y=14-3

{:}\longrightarrow\sf y=11

\therefore{\underline{\boxed{\bf (x,y)=(7,11)}}}

7 0
2 years ago
Other questions:
  • Sean answered 1820 quiz questions correctly wire percent of the quiz questions did Sean answer correctly?
    9·2 answers
  • With what radius will a circle with a central angle
    12·1 answer
  • Find the number of distinguishable permutations of the letters in the word vaccination
    15·1 answer
  • Multiply and simplify: sq rt 7x ((sq rt x)-7sq rt. 7)
    12·2 answers
  • Manny has 48 feet of wood. He wants to use all of it to create a border around a garden. The equation can be used to find the le
    6·2 answers
  • You and your friend decide to conduct a survey at your school to see whether students are in favor of a new dress code policy. Y
    10·1 answer
  • Use the number line to find<br> 0+(<br> 8<br> 19<br> 14<br> 0<br> 19<br> 8<br> OI-2<br> 21<br> 8
    12·2 answers
  • The length of a rectangle should be 20 meters longer than 8 times the width. If the length must be
    7·1 answer
  • I need to find the area of these shapes
    14·1 answer
  • What is the distance between (-3,2) and (3,0)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!