Answer:
x = -7 2/3, y = 1 1/3 and z = 5 1/3.
Step-by-step explanation:
2x+4y+3z=6 ..... 1
x-2y+z=-5 ...... 2
-x-3y-2z=-7 .......3
Add equations 2 and 3 to eliminate x:
-5y - z = -12 .....4
Multiply equation 2 by - 2:
-2x + 4y - 2z = 10
Add this to equation 1:
8y + z = 16 ........ 5
Now add equation 4 to equation 5:
3y = 4
y = 4/3 = 1 1/3.
Now find z by substituting for y in equation 4:
-5(4/3) - z = -12
z = 12 - 20/3
z = 36/3 - 20/3 = 16/3 = 5 1/3.
Finally, we find x by substituting for y and z in equation 1:
2x + 4*4/3 + 3*16/3 = 6
2x = 6 - 16/3 - 16
2x = 18/3 - 16/3 - 48/3 = -46/3
x = 23/3 = 7 2/3.
Quantity of farmland owned by Pam = 7.5 square miles.
The other important information given in the question is the equation relating square miles and acres. Using that information, the answer to the question can be easily reached.
a = 640s
= 640 * 7.5 acres
= 4800 acres.
From the above deduction, we can conclude that the correct option among all the options that are given in the question is the third option or option "C".
Answer:
1. 1
2. 10
3. 12
Step-by-step explanation:
Using the normal distribution, it is found that 0.26% of the items will either weigh less than 87 grams or more than 93 grams.
In a <em>normal distribution</em> with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
In this problem:
- The mean is of 90 grams, hence
.
- The standard deviation is of 1 gram, hence
.
We want to find the probability of an item <u>differing more than 3 grams from the mean</u>, hence:



The probability is P(|Z| > 3), which is 2 multiplied by the p-value of Z = -3.
- Looking at the z-table, Z = -3 has a p-value of 0.0013.
2 x 0.0013 = 0.0026
0.0026 x 100% = 0.26%
0.26% of the items will either weigh less than 87 grams or more than 93 grams.
For more on the normal distribution, you can check brainly.com/question/24663213