Pyruvate carboxylase and phosphoenolpyruvate carboxykinase catalyze reactions of gluconeogenesis that bypass the reaction of glycolysis that is catalyzed by pyruvate kinase.
<h3>Gluconeogenesis:</h3>
The tissues of some organs, including the brain, the eye, and the kidney, use glucose as their primary or only source of metabolic fuel. Glycogen stores become exhausted during a protracted fast or intense exercise, and glucose must be created from scratch to keep blood glucose levels stable. The process through which glucose is created from non-hexose precursors such glycerol, lactate, pyruvate, and glucogenic amino acids is known as gluconeogenesis.
Glycolysis is effectively reversed during glucose synthesis. However, gluconeogenesis makes use of four distinct enzymes to skip the three highly exergonic (and essentially irreversible) phases of glycolysis. The pyruvate carboxylase, PEP carboxykinase, fructose 1,6-bisphosphatase, and glucose 6-phosphatase enzymes are specific to gluconeogenesis. Gluconeogenesis can only take place in particular tissues because these enzymes are not found in all cell types. In humans, the liver and, to a lesser extent, the renal cortex are the primary locations for gluconeogenesis.
Learn more about Gluconeogenesis here:
brainly.com/question/14838756
#SPJ4
Answer:
It depends entirely on an equation, certain equations are meant to confuse you with numerous answers so taht you have to narrow it down, some only have one or a few. It really depends on the type of problem
25%
punnet square
dominat and recessive traits
The suppression of glycolysis is responsible for a large portion of the control of gluconeogenesis.
Discussion about the statement:
The cytosol is the site of all glycolysis and gluconeogenesis processes. The rate at which glucose is produced in the body is inversely related to the intake of carbohydrates. The suppression of glycolysis is responsible for a large portion of the control of gluconeogenesis.
Fructose 2,6-bisphosphate is an intermediate that plays a crucial role in controlling both glycolysis and gluconeogenesis. This metabolite's presence can promote glycolysis and prevent gluconeogenesis.
Control of Gluconeogenesis and Glycolysis
- At various crucial stages of glycolysis and gluconeogenesis, metabolic control takes place. The catalysts that accelerate each of these stages can be activated or inhibited by outside forces, for example, the quantity of a molecule that comes after. The conversion of glucose and ATP into glucose 6-phosphate is the first controlled step in glycolysis. Keep in mind that hexokinase catalyzes this process.
- High levels of blood glucose, AMP, and low levels of cellular ATP all trigger the activation of hexokinase. In other words, the glycolysis process is enhanced when blood glucose levels are high. Whenever cellular ATP levels are low and AMP levels are high, glycolysis is also increased. Both of these instances show that the cell is short on energy and may be directly influenced to create additional energy.
Learn more about glycolysis here:
brainly.com/question/14076989
#SPJ4