The coefficient of (3y² + 9)5 is <u>15</u>.
A polynomial is of the form a₀xⁿ + a₁xⁿ⁻¹ + a₂xⁿ⁻² + ... + aₙ₋₁x + aₙ.
Here, x is the variable, aₙ is the constant term, and a₀, a₁, a₂, ..., and aₙ₋₁, are the coefficients.
a₀ is the leading coefficient.
In the question, we are asked to identify the coefficient of (3y² + 9)5.
First, we expand the given expression:
(3y² + 9)5
= 15y² + 45.
Comparing this to the standard form of a polynomial, a₀xⁿ + a₁xⁿ⁻¹ + a₂xⁿ⁻² + ... + aₙ₋₁x + aₙ, we can say that y is the variable, 15 is the coefficient, and 45 is the constant term.
Thus, the coefficient of (3y² + 9)5 is <u>15</u>.
Learn more about the coefficients of a polynomial at
brainly.com/question/9071229
#SPJ1
Answer:
(6 - 5x(2))(x(4) - x(3))
(6 - 5x^2) (x^4 - x^3)
6x^4 - 6x^3 - 5x^6 + 5x^5
-5x^6 + 5x^5 + 6x^4 - 6x^3
Step-by-step explanation:
Answer:
<em>5</em><em>x</em><em> </em><em>=</em><em> </em><em>1</em><em>/</em><em>4</em>
<em>X </em><em>=</em><em> </em><em>2</em><em>0</em><em> </em>
<em>hope</em><em> </em><em>it</em><em> </em><em>helps</em><em> </em><em>u</em><em> </em><em>if </em><em>yes</em><em> </em><em>then</em><em> </em><em>foll</em><em>ow</em><em> me</em>
Box one ratios
Box two 35:2= 70:4