PWC operators must keep in mind that a jet drive needs moving water through the drive nozzle for maneuverability. In other term, you must have power applied in order to uphold steering control. If the engine shuts off during operation or If you release the throttle to idle, you will lose all steering control. In either situation, the PWC will remain in the direction it was headed before the throttle was released or the engine was shut off. Action of the steering control will have no outcome. If you are approaching a dock, shore, or other vessel at a speed bigger than you can control and you release the throttle to idle or shut off the engine, you won’t have maneuvering capability and the PWC will stay its forward movement.
Answer:
50m/s, 187.5m
Explanation:
Consider unit analysis:
m/s² = m/(s×s)
This can be read as "meters per second, per second". From fundamental kinematics, meters per second is the same as saying velocity.
Velocity is being increased per second, and this is called acceleration:
a = v/t, where a is acceleration, v is change of velocity and t is change of time. "Change" is represented by a triangle called delta and (delta)A = A2 - A1
From the question, we have the variables:
a = 5m/s²
(delta)v = v2 - 25m/s
(delta)t = 5s (initial time is 0)
a = v/t
(5m/s^2)=v/5s
25m/s = v2 - 25m/s
50m/s = v2
The final velocity of the vehicle is 50m/s.
A formula exists to find displacement with regards to acceleration:
d=v(initial) × t +1/2 × a × t²
d=25m/s × 5s + 1/2 × 5m/s² ×(5s)²
d=125m+1/2×125m
d=125m+62.5m
d=187.5m
The distance travelled by the vehicle is 192.5m.
<em>One of the most important skills you can have in any science is unit analysis. Treat meters, seconds, moles, etc as </em><em>values</em><em> when doing </em><em>calculations</em><em> </em><em>and see if you get the result you're looking for.</em>
Conservation of momentum: total momentum before = total momentum after
Momentum = mass x velocity
So before the collision:
4kg x 8m/s = 32
1kg x 0m/s = 0
32+0=32
Therefore after the collision
4kg x 4.8m/s = 19.2
1kg x βm/s = β
19.2 + β = 32
Therefore β = 12.8 m/s