Answer:
18 ???
Step-by-step explanation:
We have a sample that in fact represents the population.
We have to calculate the standard deviation of this population.
The difference between the standard deviation of a population comparing it to the calculation of the standard deviation of a sample is that we divide by the population side n instead of (n-1).
We have to start by calculating the mean of the population first:

Now, we can calculate the standard deviation as:
![\sigma=\sqrt[]{\dfrac{1}{n}\sum^n_{i=1}\, (x_i-\mu)^2}](https://tex.z-dn.net/?f=%5Csigma%3D%5Csqrt%5B%5D%7B%5Cdfrac%7B1%7D%7Bn%7D%5Csum%5En_%7Bi%3D1%7D%5C%2C%20%28x_i-%5Cmu%29%5E2%7D)
![\begin{gathered} \sigma=\sqrt[]{\dfrac{1}{6}((37-34)^2+(38-34)^2+(39-34)^2+(40-34)^2+(39-34)^2+(11-34)^2)} \\ \sigma=\sqrt[]{\frac{1}{6}(3^2+4^2+5^2+6^2+5^2+(-23)^2)} \\ \sigma=\sqrt[]{\frac{1}{6}(9+16+25+36+25+529)} \\ \sigma=\sqrt[]{\frac{1}{6}(640)} \\ \sigma\approx\sqrt[]{106.67} \\ \sigma\approx10.33 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Csigma%3D%5Csqrt%5B%5D%7B%5Cdfrac%7B1%7D%7B6%7D%28%2837-34%29%5E2%2B%2838-34%29%5E2%2B%2839-34%29%5E2%2B%2840-34%29%5E2%2B%2839-34%29%5E2%2B%2811-34%29%5E2%29%7D%20%5C%5C%20%5Csigma%3D%5Csqrt%5B%5D%7B%5Cfrac%7B1%7D%7B6%7D%283%5E2%2B4%5E2%2B5%5E2%2B6%5E2%2B5%5E2%2B%28-23%29%5E2%29%7D%20%5C%5C%20%5Csigma%3D%5Csqrt%5B%5D%7B%5Cfrac%7B1%7D%7B6%7D%289%2B16%2B25%2B36%2B25%2B529%29%7D%20%5C%5C%20%5Csigma%3D%5Csqrt%5B%5D%7B%5Cfrac%7B1%7D%7B6%7D%28640%29%7D%20%5C%5C%20%5Csigma%5Capprox%5Csqrt%5B%5D%7B106.67%7D%20%5C%5C%20%5Csigma%5Capprox10.33%20%5Cend%7Bgathered%7D)
Answer: the standard deviation of this population is approximately 10.33
D because it keeps on going up 10 times per month
Answer:
18
Step-by-step explanation:
The hypotenuse (longest side) = The 2 sides added together.