First, lets create a equation for our situation. Let

be the months. We know four our problem that <span>Eliza started her savings account with $100, and each month she deposits $25 into her account. We can use that information to create a model as follows:
</span>

<span>
We want to find the average value of that function </span>from the 2nd month to the 10th month, so its average value in the interval [2,10]. Remember that the formula for finding the average of a function over an interval is:

. So lets replace the values in our formula to find the average of our function:
![\frac{25(10)+100-[25(2)+100]}{10-2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B25%2810%29%2B100-%5B25%282%29%2B100%5D%7D%7B10-2%7D%20)



We can conclude that <span>the average rate of change in Eliza's account from the 2nd month to the 10th month is $25.</span>
Answer:
Step-by-step explanation:
t(35/100)=42
35t=4200
t=120
So there is a total of 120 fruit trees.
Answer:
(b) 
Step-by-step explanation:
When two p and q events are independent then, by definition:
P (p and q) = P (p) * P (q)
Then, if q and r are independent events then:
P(q and r) = P(q)*P(r) = 1/4*1/5
P(q and r) = 1/20
P(q and r) = 0.05
In the question that is shown in the attached image, we have two separate urns. The amount of white balls that we take in the first urn does not affect the amount of white balls we could get in the second urn. This means that both events are independent.
In the first ballot box there are 9 balls, 3 white and 6 yellow.
Then the probability of obtaining a white ball from the first ballot box is:

In the second ballot box there are 10 balls, 7 white and 3 yellow.
Then the probability of obtaining a white ball from the second ballot box is:

We want to know the probability of obtaining a white ball in both urns. This is: P(
and
)
As the events are independent:
P(
and
) = P (
) * P (
)
P(
and
) = 
P(
and
) = 
Finally the correct option is (b) 
Answer: 
Step-by-step explanation:
Given : The probability of a correct classification of any part is : p=0.96
sample size : n= 3
The formula to find the mean and variance for binomial distribution is given by :-

Let the random variable X denote the number of parts that are correctly classified.
The, for the given situation, we have

Hence, the mean and variance of X are 2.88 and 0.115 respectively.
Bsbsnsnsjsjenend 2828282828282828289229292829