Answer:
0.02
Step-by-step explanation:
The volume of the earth's oceans is approximately 1.34\cdot 10^{9}1.34⋅10
9
1, point, 34, dot, 10, start superscript, 9, end superscript cubic kilometers (\text{km}^3)(km
3
)left parenthesis, start text, k, m, end text, cubed, right parenthesis, and ocean water has a mass of about 1.03 \cdot 10^{12}\,\dfrac{\text{kg}}{\text{km}^3}1.03⋅10
12
km
3
kg
1, point, 03, dot, 10, start superscript, 12, end superscript, start fraction, start text, k, g, end text, divided by, start text, k, m, end text, cubed, end fraction .
To simplify, we will use the product of powers property of exponents that says that x^a\cdot x^b = x^{a+b}x
a
⋅x
b
=x
a+b
x, start superscript, a, end superscript, dot, x, start superscript, b, end superscript, equals, x, start superscript, a, plus, b, end superscript.
\qquad 1.34\cdot 10^{9}\,\cancel{\text{km}^3} \cdot 1.03 \cdot 10^{12}\,\dfrac{\text{kg}}{\cancel{\text{km}^3}} = 1.3802 \cdot 10^{21}\,\text{kg}1.34⋅10
9
km
3
⋅1.03⋅10
12
km
3
kg
=1.3802⋅10
21
kg1, point, 34, dot, 10, start superscript, 9, end superscript, start cancel, start text, k, m, end text, cubed, end cancel, dot, 1, point, 03, dot, 10, start superscript, 12, end superscript, start fraction, start text, k, g, end text, divided by, start cancel, start text, k, m, end text, cubed, end cancel, end fraction, equals, 1, point, 3802, dot, 10, start superscript, 21, end superscript, start text, k, g, end text
Hint #2
Next we want to know what portion of the earth's mass this represents. We have:
\qquad \begin{aligned} \dfrac{\text{mass of the oceans}}{\text{total mass of the earth}} &= \dfrac{1.3802 \cdot 10^{21}\,\text{kg}}{6\cdot 10^{24}\,\text{kg}} \\\\ &= \dfrac{1.3802}{6\cdot 10^{3}} \\\\ &= \dfrac{1.3802}{6000} \\\\ &= 0.0002300\overline{3} \end{aligned}
total mass of the earth
mass of the oceans
=
6⋅10
24
kg
1.3802⋅10
21
kg
=
6⋅10
3
1.3802
=
6000
1.3802
=0.0002300
3
To convert this to a percent, we multiply by 100100100, so the oceans represent 0.02300\overline{3}\%0.02300
3
%0, point, 02300, start overline, 3, end overline, percent of the earth's total mass, according to these figures.
Hint #3
To the nearest hundredth of a percent, 0.020.020, point, 02 percent of the earth's mass is from oceans.