Which of the following is the domainof the given relation?{(-6, 3), (-4 ,5), (0, 0)}A {0, 4, -6}B {0, 3, 5)C {3, 4, 0}D {-6, -4,
Bas_tet [7]
The domain is the input, which is the x value in the relation (x, y)
Hence the domain in the given relation {(-6, 3), (-4 ,5), (0, 0) is :
{-6, -4, 0}
5,595,756,198,388
Step-by-step explanation:
The answer is A endurance
You want to find the value of x for which the area under the curve to the left of x is 0.6. One way to do that is to create the cumulative distribution function (CDF) for the given PDF, then see where it is equal to 0.6.
Doing that, we find a = 5.
Answer:

Step-by-step explanation:
An equation in the vertex form is written as

Where the point (h, k) is the vertex of the equation.
For an equation in the form
the x coordinate of the vertex is defined as

In this case we have the equation
.
Where

Then the x coordinate of the vertex is:

The y coordinate of the vertex is replacing the value of
in the function

Then the vertex is:

Therefore The encuacion excrita in the form of vertice is:

To find the coefficient a we substitute a point that belongs to the function 
The point (0, -1) belongs to the function. Thus.


<em>Then the written function in the form of vertice is</em>
