Answer:
B 656oz
Step-by-step explanation:
The experimental probability of rolling a 6 is 9/60 which can be determined by dividing the frequency of the observation 6 with the total frequency of the experiment.
<u>Step-by-step explanation:</u>
Experimental probability is different from theoretical probability because the former is obtained by experimentation while the latter is what we expect theoretically.When we take a number of observations, the experimental probability and theoretical probability need not be the same.
In this question we have to determine the experimental probability of 6. It can be determined by dividing the frequency of the observation 6 by the total frequency of the experiment.
frequency of 6=9
total frequency=frequency of 1+frequency of 2+frequency of 3+frequency of 4+frequency of 5+frequency of 6
=13+11+9+8+10+9
=60
P(6)=frequency of 6/total frequency
=9/60
Answer:

Step-by-step explanation:
Given :-
The sum of two numbers is 1 .
The product of the nos . is 12 .
And we need to find out the numbers. So let us take ,
First number be x
Second number be 1-x .
According to first condition :-

Hence the numbers are 4 and -3
Step-by-step explanation:
<h2>Answer:-</h2><h3>Given ,</h3>
The figure is Similar.
Observation:-
Similar figures have similar sides. If we see carefully in smaller triangle, 3 has been added to each side and they are similar. We need to find y.
We have :-
5+3=8 as similar sides.
So, applying same algorithm,



is the answer.
Hope it helps :)
Answer:
Factor, in mathematics, a number or algebraic expression that divides another number or expression evenly—i.e., with no remainder. For example, 3 and 6 are factors of 12 because 12 ÷ 3 = 4 exactly and 12 ÷ 6 = 2 exactly. The other factors of 12 are 1, 2, 4, and 12. A positive integer greater than 1, or an algebraic expression, that has only two factors (i.e., itself and 1) is termed prime; a positive integer or an algebraic expression that has more than two factors is termed composite. The prime factors of a number or an algebraic expression are those factors which are prime. By the fundamental theorem of arithmetic, except for the order in which the prime factors are written, every whole number larger than 1 can be uniquely expressed as the product of its prime factors; for example, 60 can be written as the product 2·2·3·5.