Solve the following system:
{6 t - 5 s = -4 | (equation 1)
{-r - 4 s + 3 t = -4 | (equation 2)
{-2 r - 4 s - 4 t = -9 | (equation 3)
Swap equation 1 with equation 3:
{-(2 r) - 4 s - 4 t = -9 | (equation 1)
{-r - 4 s + 3 t = -4 | (equation 2)
{0 r - 5 s + 6 t = -4 | (equation 3)
Subtract 1/2 × (equation 1) from equation 2:
{-(2 r) - 4 s - 4 t = -9 | (equation 1)
{0 r - 2 s + 5 t = 1/2 | (equation 2)
{0 r - 5 s + 6 t = -4 | (equation 3)
Multiply equation 1 by -1:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 2 s + 5 t = 1/2 | (equation 2)
{0 r - 5 s + 6 t = -4 | (equation 3)
Multiply equation 2 by 2:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 4 s + 10 t = 1 | (equation 2)
{0 r - 5 s + 6 t = -4 | (equation 3)
Swap equation 2 with equation 3:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s + 6 t = -4 | (equation 2)
{0 r - 4 s + 10 t = 1 | (equation 3)
Subtract 4/5 × (equation 2) from equation 3:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s + 6 t = -4 | (equation 2)
{0 r+0 s+(26 t)/5 = 21/5 | (equation 3)
Multiply equation 3 by 5:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s + 6 t = -4 | (equation 2)
{0 r+0 s+26 t = 21 | (equation 3)
Divide equation 3 by 26:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s + 6 t = -4 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Subtract 6 × (equation 3) from equation 2:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s+0 t = (-115)/13 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Divide equation 2 by -5:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r+s+0 t = 23/13 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Subtract 4 × (equation 2) from equation 1:
{2 r + 0 s+4 t = 25/13 | (equation 1)
{0 r+s+0 t = 23/13 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Subtract 4 × (equation 3) from equation 1:
{2 r+0 s+0 t = (-17)/13 | (equation 1)
{0 r+s+0 t = 23/13 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Divide equation 1 by 2:
{r+0 s+0 t = (-17)/26 | (equation 1)
{0 r+s+0 t = 23/13 | (equation 2)
v0 r+0 s+t = 21/26 | (equation 3)
Collect results:Answer: {r = -17/26
{s = 23/13 {t = 21/26
Answer:
Dimensions of the rug = 13 ft × 26 ft
Step-by-step explanation:
Dimensions of the room = 21 ft × 34 ft
Area of the room = 21 × 34 = 714 ft²
Cynthia wants to leave a uniform strip of floor around the rug.
Let the width of the rug = x ft
Then the dimensions of the rug will be = (21- 2x)ft × (34 - 2x)ft
Area of the rug = (21 - 2x)×(34 - 2x) square feet
338 = (21 - 2x)×(34 - 2x)
338 = 714 - 68x - 42x + 4x²
4x² - 110x + 714 - 338 = 0
4x² - 110x + 376 = 0
2x² - 55x + 188 = 0
2x² - 47x - 8x + 188 = 0
x(2x - 47) - 8(x - 47) = 0
(x - 4)(2x - 47) = 0
x = 4, 
For x = 23.5 area of the rug will be negative.
Therefore, x = 4 ft will be the width of the rug.
Dimensions of the rug will be 13 ft × 26 ft.
Answer:
40 classrooms
Step-by-step explanation:
Divide 1200 by 30.
1200÷30=40
If 390 students are boys just subtract 390 from 1200.
1200-390= 810
There must be 810 girls if there are 390 boys
Answer:
7+28=35
Step-by-step explanation:
I don’t know and i understand that the other one didn’t do it but did you already try searching it?