Answer:
Confidence interval :
to ![24.493](https://tex.z-dn.net/?f=24.493)
Step-by-step explanation:
A quality analyst selects twenty racquets and obtains the following lengths:
21, 25, 23, 22, 24, 21, 25, 21, 23, 26, 21, 24, 22, 24, 23, 21, 21, 26, 23, 24
So, sample size = n =20
Now we are supposed to find Construct a 99.9% confidence interval for the mean length of all the junior's tennis racquets manufactured at this plant.
Since n < 30
So we will use t-distribution
Confidence level = 99.9%
Significance level = α = 0.001
Now calculate the sample mean
X=21, 25, 23, 22, 24, 21, 25, 21, 23, 26, 21, 24, 22, 24, 23, 21, 21, 26, 23, 24
Sample mean = ![\bar{x}=\frac{\sum x}{n}](https://tex.z-dn.net/?f=%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Csum%20x%7D%7Bn%7D)
Sample mean = ![\bar{x}=\frac{21+25+23+22+24+21+25+21+23+ 26+ 21+24+22+ 24+23+21+ 21+ 26+23+ 24}{20}](https://tex.z-dn.net/?f=%5Cbar%7Bx%7D%3D%5Cfrac%7B21%2B25%2B23%2B22%2B24%2B21%2B25%2B21%2B23%2B%2026%2B%2021%2B24%2B22%2B%2024%2B23%2B21%2B%2021%2B%2026%2B23%2B%2024%7D%7B20%7D)
Sample mean = ![\bar{x}=23](https://tex.z-dn.net/?f=%5Cbar%7Bx%7D%3D23)
Sample standard deviation = ![\sqrt{\frac{\sum(x-\bar{x})^2}{n-1}}](https://tex.z-dn.net/?f=%5Csqrt%7B%5Cfrac%7B%5Csum%28x-%5Cbar%7Bx%7D%29%5E2%7D%7Bn-1%7D%7D)
Sample standard deviation = ![\sqrt{\frac{(21-23)^2+(25-23)^2+(23-23)^2+(22-23)^2+(24-23)^2+(21-23)^2+(25-23)^2+(21-23)^2+(23-23)^2+(26-23)^2+(21-23)^2+(24-23)^2+(22-23)^2+(24-23)^2+(23-23)^2+(21-23)^2+(21-23)^2+(26-23)^2+(23-23)^2+(24-23)^2}{20-1}}](https://tex.z-dn.net/?f=%5Csqrt%7B%5Cfrac%7B%2821-23%29%5E2%2B%2825-23%29%5E2%2B%2823-23%29%5E2%2B%2822-23%29%5E2%2B%2824-23%29%5E2%2B%2821-23%29%5E2%2B%2825-23%29%5E2%2B%2821-23%29%5E2%2B%2823-23%29%5E2%2B%2826-23%29%5E2%2B%2821-23%29%5E2%2B%2824-23%29%5E2%2B%2822-23%29%5E2%2B%2824-23%29%5E2%2B%2823-23%29%5E2%2B%2821-23%29%5E2%2B%2821-23%29%5E2%2B%2826-23%29%5E2%2B%2823-23%29%5E2%2B%2824-23%29%5E2%7D%7B20-1%7D%7D)
Sample standard deviation= s = ![1.72](https://tex.z-dn.net/?f=1.72)
Degree of freedom = n-1 = 20-1 -19
Critical value of t using the t-distribution table
= 3.883
Formula of confidence interval : ![\bar{x} \pm t_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}}](https://tex.z-dn.net/?f=%5Cbar%7Bx%7D%20%5Cpm%20t_%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%20%5Ctimes%20%5Cfrac%7Bs%7D%7B%5Csqrt%7Bn%7D%7D)
Substitute the values in the formula
Confidence interval : ![23 \pm 1.73 \times \frac{1.72}{\sqrt{20}}](https://tex.z-dn.net/?f=23%20%5Cpm%201.73%20%5Ctimes%20%5Cfrac%7B1.72%7D%7B%5Csqrt%7B20%7D%7D)
Confidence interval :
to ![23 + 3.883 \times \frac{1.72}{\sqrt{20}}](https://tex.z-dn.net/?f=23%20%2B%203.883%20%5Ctimes%20%5Cfrac%7B1.72%7D%7B%5Csqrt%7B20%7D%7D)
Confidence interval :
to ![24.493](https://tex.z-dn.net/?f=24.493)
Hence Confidence interval :
to ![24.493](https://tex.z-dn.net/?f=24.493)