Answer:
Probability of missing two passes in a row is 0.08.
Step-by-step explanation:
Event E = A football player misses twice in a row.
P(E) = ?
Event X = Football player misses the first pass
P(X) = 0.4
Event Y = Football player misses just after he first miss
P(Y) = 0.2
Both the events are exclusive so the probability of occuring of these two events can be calculated by the formula:
P(E) = P(X).P(Y)
P(E) = 0.4*0.2
P(E) = 0.08
Answer:Y=8,-5
Step-by-step explanation:
Check the forward differences of the sequence.
If
, then let
be the sequence of first-order differences of
. That is, for n ≥ 1,

so that
.
Let
be the sequence of differences of
,

and we see that this is a constant sequence,
. In other words,
is an arithmetic sequence with common difference between terms of 2. That is,

and we can solve for
in terms of
:



and so on down to

We solve for
in the same way.

Then



and so on down to


1.6 divided by x =4
we can exchange the 4 and the x
1.6 divided by 4 =x
.4 =x