To be at equilibrium means the rate of the forward reaction must equal the rate of the reverse reaction. This does not mean that there should be an equal amount of both products and reactants when at equilibrium. It simply means the RATES of the forward and the reverse are equal to one another.
Explanation:
The property of a substance to resist the flow of motion is known as viscosity. And, more is the density of a substance more will be its viscosity.
Whereas, lesser is the density of a substance then it is easy for the substance to move.
This means that more is the viscosity of a substance least will be its flow and when a substance has lesser viscosity then it will readily flow from one point to another.
Thus, we can conclude that the viscosities of several liquids are being compared. All the liquids are poured down a slope with equal path lengths. The liquid with the highest viscosity will reach the bottom last.
Answer;
12 carbon atoms, 22 hydrogen atoms and 11 oxygen atoms.
Explanation:
Using a balanced chemical equation we can identify the number of carbon, hydrogen, and oxygen atoms in sugar.
CxHyOn + 12O₂ → 11 H₂O + 12CO₂
When an equation is completely balanced, then the number of each atom of an element is equal on the reactant side and the product side.
Therefore;
For carbon; x = 12
For Hydrogen; y = (11×2) = 22
For Oxygen; n + (12×2) = 11 + (12×2)
= n + 24 = 11 + 24
n = 11
Therefore the sugar has, 12 carbon atoms, 22 hydrogen atoms and 11 oxygen atoms.
Thus the balanced equation would be;
C₁₂H₂₂O₁₁ + 12O₂ → 11 H₂O + 12CO₂
Answer:
See explanation below
Explanation:
First, you are not providing any data to solve this, so I'm gonna use some that I used a few days ago in the same question. Then, you can go and replace the data you have with the procedure here
The concentration of liquid sodium will be 8.5 MJ of energy, and I will assume that the temperature will not be increased more than 15 °C.
The expression to calculate the amount of energy is:
Q = m * cp * dT
Where: m: moles needed
cp: specific heat of the substance. The cp of liquid sodium reported is 30.8 J/ K mole
Replacing all the data in the above formula, and solving for m we have:
m = Q / cp * dT
dT is the increase of temperature. so 15 ° C is the same change for 15 K.
We also need to know that 1 MJ is 1x10^6 J,
so replacing all data:
m = 8.5 * 1x10^6 J / 30.8 J/K mole * 15 m = 18,398.27 moles
The molar mass of sodium is 22.95 g/mol so the mass is:
mass = 18,398.27 * 22.95 = 422,240.26 g or simply 422 kg rounded.