Answer:
I think it is the last one
The one advantage of using DNS assay to detect maltose production is the formation of a soluble and colored product compound.
The reaction that occurs between maltose and DNS in the assay is a redox reaction (reduction and oxidation) such that maltose gets oxidized and becomes Maltonic Acid while the DNS gets reduced into reduced DNS. The intensity of orange/brown /red color of reduced DNS is proportionately related to the amount of Maltose in the solution.
Answer:
Valine-Leucine-Proline-Lysine-Histidine
Explanation:
The central dogma of biology is the process by which DNA is used to synthesize RNA and subsequently amino acid sequence (PROTEIN). The processes of transcription and translation is used in gene expression. Transcription is the process whereby the information encoded in a DNA molecule is used to synthesize a mRNA molecule. Transcription is catalyzed by RNA polymerase enzyme, which uses complementary base pairing rule i.e Adenine(A)-Thymine(T), Guanine(G)-Cytosine(C) pairing.
N.B: Thymine is replaced by Uracil in the mRNA
For the above DNA sequence: CAC GAC GGA TTC GTA, the mRNA sequence will be: GUG CUG CCU AAG CAU
Translation is the second process of gene expression which involves the synthesis of an amino acid sequence from an mRNA molecule. The mRNA is read in a group of three nucleotides called CODON. Each codon specifies an amino acid (see attached image for genetic code)
Based on the attached genetic code, an mRNA sequence: GUG CUG CCU AAG CAU will encode an amino acid sequence: Valine(Val) - Leucine (Leu) -Proline (Pro) -Lysine (Lys) - Histidine (His).
GUG specifies Valine amino acid
CUG specifies Leucine amino acid
CCU specifies Proline amino acid
AAG specifies Lysine amino acid
CAU specifies Histidine amino acid
They will likely be wiped out as well, since if the fungus can wipe out some of the Cavendish bananas, they will be likely to be able to wipe out the rest since they all share the same genes. Since they all share the same genes they will have the same weaknesses the fungus can exploit