Answer:
⦿ (7, 2)
Step-by-step explanation:
Try each solution in both inequalities and see which solution makes both inequalities true.
4x + 2y > 8
x - y ≥ 2
A. (2, 4)
4(2) + 2(4) > 8
16 > 8 True
2 - 4 ≥ 2
-2 ≥ 2 False
B. (4, 0)
4(-4) + 2(0) > 8
-16 > 8 False
C. (7, 2)
4(7) + 2(2) > 8
32 > 8 True
7 - 2 ≥ 2
5 ≥ 2 True
D. (1, -3)
4(1) + 2(-3) > 8
-2 > 8 False
Answer: C.
The completed table will have values filled into it accordingly from left to right and the downwards.
<h3>What values are required to complete the table?</h3>
The concept of relative frequencies involves expressing the frequency of occurrence of events as a fraction of a whole frequency.
Hence, it follows that the blank space on the top-leftmost corner of the table can be filled with the value; 4/5 = 0.8.
For the top-rightmost blank space in the table, the required value is; 2/754 = 0.0027.
For the bottom-leftmost blank space, the required value to fill the table is; 1/5 = 0.2.
For the bottom-rightmost blank space, the required value is; 752/754 = 0.9973.
Read more on relative frequency;
brainly.com/question/1094036
#SPJ1
8 percent of 84000 is 6720 add 2500 equals 9220
Answer:
![15 \sqrt[3]{2}](https://tex.z-dn.net/?f=15%20%5Csqrt%5B3%5D%7B2%7D%20)
Step-by-step explanation:
![{(27 \times 250)}^{ \frac{1}{3} } = {(27 \times 125 \times 2)}^{ \frac{1}{3} } \\ = {27}^{ \frac{1}{3} } \times {125}^{ \frac{1}{3} } \times {2}^{ \frac{1}{3} } \\ = \sqrt[ 3]{27} \times \sqrt[3]{125} \times \sqrt[3]{2} \\ = \sqrt[3]{ {3}^{3} } \times \sqrt[3]{ {5}^{3} } \times \sqrt[3]{2} \\ = 3 \times 5 \times \sqrt[3]{2} \\ = 15 \sqrt[3]{2}](https://tex.z-dn.net/?f=%20%7B%2827%20%5Ctimes%20250%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%20%20%7B%2827%20%5Ctimes%20125%20%5Ctimes%202%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B27%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B125%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B%203%5D%7B27%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B125%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%20%7B5%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%203%20%5Ctimes%205%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%2015%20%5Csqrt%5B3%5D%7B2%7D%20)