Answer:
2
Step-by-step explanation:
Given g(x) = sin(x)-1/cos2(x), we are to find the limit if the function g(x) as g(x) tends to π/2
Substituting π/2 into the function
lim x-->π/2 sin(x)-1/cos 2(x)
= sin(π/2) - 1/cos(2)(π/2)
= 1 - 1/cosπ
= 1- 1/-1
= 1 -(-1)
= 1+1
= 2
Hence the limit of the function h(x) = sin(x)-1/cos2(x) as x--> π/2 is 2
solution:
we know that ,
u.v = ΙuΙ ΙvΙcosθ
here,
θ =60° (since the given triangle is equilateral triangle)
u.v = ΙuΙ ΙvΙcos60°
= 1 x 1 x 1/2
u.v = 1/2
now, u.w = ΙuΙ ΙwΙcosθ
= ΙuΙ x cos(60x2)
u.w = -1/2
Every degree is a touching point since each root factor is an x intercept
therefor the answer is 8th degree
The answer is C
Hope this helped:)