Cº b<span>. </span>Points<span> on the </span>x<span>-axis ( </span>Y. 0)-7<span> (6 </span>2C<span>) are mapped to </span>points<span>. --IN- on the </span>y<span>-axis. ... </span>Describe<span> the transformation: 'Reflect A ALT if A(-5,-1), L(-</span>3,-2), T(-3,2<span>) by the </span>rule<span> (</span>x<span>, </span>y) → (x<span> + </span>3<span>, </span>y<span> + </span>2<span>), then reflect over the </span>y-axis, (x,-1) → (−x,−y<span>). A </span>C-2. L (<span>0.0 tº CD + ... </span>translation<span> of (</span>x,y) → (x–4,y-3)? and moves from (3,-6) to (6,3<span>), by how.</span>
<h2><em>Given PR + QR = 25 , PQ = 5
</em></h2><h2><em>PR be x. and QR = 25 - x </em></h2><h2><em>
</em></h2><h2><em>Pythagoras theorem ,PR2 = PQ2 + QR2
</em></h2><h2><em>
</em></h2><h2><em>x2 = (5)2 + (25 - x)2
</em></h2><h2><em>
</em></h2><h2><em>x2 = 25 + 625 + x2 - 50x
</em></h2><h2><em>50x = 650
</em></h2><h2><em>x = 13
</em></h2><h2><em> </em></h2><h2><em>
</em></h2><h2><em> PR = 13 cm
</em></h2><h2><em>QR = (25 - 13) cm = 12 cm
</em></h2><h2><em>
</em></h2><h2><em>sin P = QR/PR = 12/13
</em></h2><h2><em>
</em></h2><h2><em>cos P = PQ/PR = 5/13
</em></h2><h2><em>
</em></h2><h2><em>tan P = QR/PQ = 12/5 </em></h2><h2><em /></h2><h2><em>HOPE IT HELPS (◕‿◕✿)</em></h2>
Answer:
∆WUV⁓∆SRT
Step-by-step explanation:
Answer:
The answer is B
Step-by-step explanation:
So basically you plug in the answer, 10 in the x value and 1 in the y value. Then you will find out which value is greater.