Answer:
Inner planets: Mercury, Venus, Earth, Mars
Outer planets: Jupiter, Saturn, Uranus, Neptune
Explanation:
Inner planets are planets who have an orbit that is within the asteroid belt, they are closer to the sun. Theses include Mercury, Venus, Earth, and Mars. Outer planets are planets are the gas giants, they are called gas giants because they are mainly made up of gas and liquid. These include Jupiter, Saturn, Uranus, and Neptune.
Answer:
Interphase
Explanation:
Interphase is the G1, or gap 1, phase in which the new cell grows and carries out its functions in the body; the S, or synthesis, phase when the chromosomes replicate; and the G2, or gap 2, phase, when the cell grows further and prepares to divide.
Answer : The dissociation constant of the PFK‑inhibitor complex is, 5 µM
Explanation :
The expression for reversible competitive inhibition when apparent Km affected by addition of the inhibitor is:
![K_m_a=K_m[1+\frac{I}{K_i}]](https://tex.z-dn.net/?f=K_m_a%3DK_m%5B1%2B%5Cfrac%7BI%7D%7BK_i%7D%5D)
where,
= apparent value = 52 µM
= Michaelis–Menten constant = 40 µM
I = inhibitor concentration = 1.5 µM
= dissociation constant of the PFK‑inhibitor complex
Now put all the given values in the above formula, we get:
![52\mu M=40\mu M[1+\frac{1.5\mu M}{K_i}]](https://tex.z-dn.net/?f=52%5Cmu%20M%3D40%5Cmu%20M%5B1%2B%5Cfrac%7B1.5%5Cmu%20M%7D%7BK_i%7D%5D)

Therefore, the dissociation constant of the PFK‑inhibitor complex is, 5 µM
Answer:
capture
giant impact hypothesis
electromagnetic spectrum
cold
14
The moon's mass is much lower than the earth's; therefore, its gravity isn't strong enough to hold an atmosphere. This lack of an atmosphere and the moon's small size allowed it to become cool enough to the point at which it completely solidified. Thus, the moon doesn't have any plate tectonic activity.
Explanation:
Answer:
the diagram explains the process of DNA digestion and DNA ligation, which is usually used in molecular cloning techniques
Explanation:
Molecular cloning can be defined as the process used to synthesize multiple copies of a particular DNA fragment. Molecular cloning requires the insertion of a foreign DNA fragment into an appropriate vector (e.g., a plasmid) through the action of specific enzymes that serve to cut and ligate DNA fragments. DNA digestion and DNA ligation use specific restriction enzymes and DNA ligases, respectively, in order to insert the foreign DNA fragment. For this purpose, restriction enzymes that generate single-stranded overhangs are preferred to create sticky ends which bind by complementary base pairing. Subsequently, a DNA ligase enzyme joins the DNA fragments together in order to create recombinant DNA molecules. DNA Ligation is often achieved by using a specific T4 DNA ligase, while there are many restriction enzymes that generate sticky-ends (e.g., BamHI, EcoRI, BaI228I, etc).