Answer:
V = 31.5 in ^3
Step-by-step explanation:
The volume is Bh
The base is the triangle
B = 1/2 (7) *2
B = 7 in^2
Now find the volume
V = 7* 4.5
V = 31.5 in ^3
For this case we must find the unit cost (dollars per pound) of each site and then compare.
We take into account that:
1kg equals 2.205 pounds
So, we have:
Site 1:
Site 2:
So, the unit cost is:
Thus, the best deal is on site 2.
ANswer:
The best deal is on site 2.
<h2>
Answer:</h2>
<h3>
<em>x=45degrees</em></h3>
<h2>
Step-by-step explanation:</h2>
Let the angle to be solved be x
Let the supplement/compliment by y
x+y=90 Complimentary angles add up to 90 degrees.
x+3y=180 Supplementary angles add up to 180 degrees, the other angle is thrice the other compliment.
Evaluating this as a system:
x+y=90 Isolate x:
x=90−y Input into the other equation:
(90−y)+3y=180 Combine like terms, isolate y and its coefficients:
2y=90 Isolate y
y=45 Input into the first equation:
x+45=90 Isolate x:
x=45degrees
I think the answer is c due to the word bag being plural but I’m not sure.
Answer:
The rocket will reach its maximum height after 6.13 seconds
Step-by-step explanation:
To find the time of the maximum height of the rocket differentiate the equation of the height with respect to the time and then equate the differentiation by 0 to find the time of the maximum height
∵ y is the height of the rocket after launch, x seconds
∵ y = -16x² + 196x + 126
- Differentiate y with respect to x
∴ y' = -16(2)x + 196
∴ y' = -32x + 196
- Equate y' by 0
∴ 0 = -32x + 196
- Add 32x to both sides
∴ 32x = 196
- Divide both sides by 32
∴ x = 6.125 seconds
- Round it to the nearest hundredth
∴ x = 6.13 seconds
∴ The rocket will reach its maximum height after 6.13 seconds
There is another solution you can find the vertex point (h , k) of the graph of the quadratic equation y = ax² + bx + c, where h = and k is the value of y at x = h and k is the maximum/minimum value
∵ a = -16 , b = 196
∴
∴ h = 6.125
∵ h is the value of x at the maximum height
∴ x = 6.125 seconds
- Round it to the nearest hundredth
∴ x = 6.13 seconds