1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
3 years ago
11

Tickets to a movie cost $5 for adults and $3 for students. A group of friends purchased 18 tickets for $82.00. How many adults t

icket did they buy?
Mathematics
1 answer:
TEA [102]3 years ago
7 0

Answer:

They purchased 14 adult tickets and 4 kids tickets.

Step-by-step explanation:

14 x 5 = 70

3x4=12

and then add 70 plus 12 to get 82 dollars.

You might be interested in
Write down, the three odd numbers in terms of ‘n’ whose middle term is ′2n − 1′
Afina-wow [57]

Answer:

but what is the value of term 'n'

Step-by-step explanation:

n=3

2n-1

2×3-1

6-1

5

Ans

8 0
3 years ago
Translate algebraic expressions <br> Subtract 6 from 4 times d
valentinak56 [21]
I think the Answer is 4d-6


8 0
3 years ago
A(b) is a function<br><br> A. True<br><br> B. False
alexdok [17]
The answer is a. true
5 0
3 years ago
Read 2 more answers
What is 3.59 rounded to the nearest whole number?
Sedbober [7]

Answer:

its 4 ezy

Step-by-step explanation:

please mark as brainlists

3 0
3 years ago
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​
DochEvi [55]

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • May someone help me please please please with the right answer
    11·2 answers
  • Can somebody help me with these?
    8·2 answers
  • BEST ANSWER GETS BRAINLYEST
    14·2 answers
  • How many square units are in the area of the triangle whose vertices are the x and y intercepts of the curve y = (x-3)^2 (x+2)?
    5·1 answer
  • Erick wants to buy a new mountain bike that cost $250. He already saved $120 and plans to save $20 each week from the money he e
    6·2 answers
  • Cho tam giác ABC cân tại A trung tuyến AM.Biết BC=6cm,AM=4cm .Tính độ dài các cạnh AB và AC
    11·1 answer
  • Select the correct answer.
    14·2 answers
  • Find the mean of the following data set: 8, 5, 7, 10, 15, 21
    10·2 answers
  • A carnival charges $3 for kids and $10 for adults. On Saturday, there were 500 visitors, and the total amount taken at the gate
    5·1 answer
  • GUYS HELP NOW PLS WHAT IS THE PROBABILITY NOTATION FOR THE PROBABILITY OF CHOOSING A GREEN MARBLE HELPPPP PLS
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!