Answer:
X=25
Y=25
Z=115
Step-by-step explanation:
Answer:
Δ AXY is not inscribed in circle with center A.
Step-by-step explanation:
Given: A circle with center A
To find: Is Δ AXY inscribed in circle or not
A figure 1 is inscribed in another figure 2 if all vertex of figure 1 is on the boundary of figure 2.
Here figure 1 is Δ AXY with vertices A , X and Y
And figure 2 is Circle.
Clearly from figure, Vertices A , X and Y are not on the arc/boundary of circle.
Therefore, Δ AXY is not inscribed in circle with center A.
Answer:
Are there directions?
Step-by-step explanation:
Given that the point (12,-5) which takes the form (x,y), This implies that:
opposite=-5
adjacent=12
thus using using Pythagorean theorem, the hypotenuse will be:
c^2=a^2+b^2
plugging the values we obtain:
c^2=(12)^2+(-5)^2
c^2=144+15
c^2=169
thus
c=13
but
cos θ=adjacent/ hypotenuse
therefore:
cos θ=12/13
Answer is option . D