Answer:
2-methoxy-2-methylpropane
Explanation:
The first step for this reaction is the carbocation formation. In this step, a tertiary carbocation is formed. Also, we will have a good leaving group so bromide will be formed. Then the methanol acts as a nucleophile and attacks the carbocation. Next, a positive charge is generated upon the oxygen, this charge can be removed when the hydrogen leaves the molecule as
. (See figure)
Answer: aluminium, mercury , platinum and copper.
Explanation:
A single replacement reaction is one in which a more reactive element displaces a less reactive element from its salt solution. Thus one element should be different from another element.
A general single displacement reaction can be represented as :

Thus the metals which are more reactive than magnesium will react with magnesium sulphate solution.
The metals which are more reactive than magnesium are aluminium, mercury , platinum and copper.
The rows are known as PERIODS and the columns are know as GROUPS.
Density decreases that's why ice floats on water because it's less dense than water.
<span>This question asksyou to apply Hess's law.
You have to look for how to add up all the reaction so that you get the net equation as the combustion for benzene. The net reaction should look something like C6H6(l)+ O2 (g)-->CO2(g) +H2O(l). So, you need to add up the reaction in a way so that you can cancel H2 and C.
multiply 2 H2(g) + O2 (g) --> 2H2O(l) delta H= -572 kJ by 3
multiply C(s) + O2(g) --> CO2(g) delta H= -394 kJ by 12
multiply 6C(s) + 3 H2(g) --> C6H6(l) delta H= +49 kJ by 2 after reversing the equation.
Then,
6 H2(g) + 3O2 (g) --> 6H2O(l) delta H= -1716 kJ
12C(s) + 12O2(g) --> 12CO2(g) delta H= -4728 kJ
2C6H6(l) --> 12 C(s) + 6 H2(g) delta H= - 98 kJ
______________________________________...
2C6H6(l) + 16O2 (g)-->12CO2(g) + 6H2O(l) delta H= - 6542 kJ
I hope this helps and my answer is right.</span>