Answer:
(-19, 55)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = -3x - 2
5x + 2y = 15
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 5x + 2(-3x - 2) = 15
- Distribute 2: 5x - 6x - 4 = 15
- Combine like terms: -x - 4 = 15
- Isolate <em>x</em> term: -x = 19
- Isolate <em>x</em>: x = -19
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define original equation: y = -3x - 2
- Substitute in <em>x</em>: y = -3(-19) - 2
- Multiply: y = 57 - 2
- Subtract: y = 55
Y = x-3
Basically you just need to plug in an x value and solve for y
y = x - 3
y = (4) - 3
y = 1
In this case, the ordered pair of this equation would be (4, 1)
You can do this given any x or y coordinate
Hope this helps
composite numbers less than 12={1,3,4,6,8,9,10}
You use the arithmetic sequence formula and input the information given to you.
tn = a + (n-1)d
t(56) is what your looking for so don't worry about the tn.
a is your first term,
a = 15.
n is the position of the term you are looking for, n = 56.
And d is the common difference, you find this by taking t2 and subtracting t1. t2=18 and t1=15.
d = 18 - 15 = 3
Inputting it all into the formula you get,
t(56) = 15 + (56-1)(3)
term 56 = 180.
You use this formula to find any term in a sequence provided you are given enough info. You can also manipulate it if you are asked to find something else like the first term(a), common difference(d) or term position(n). It just depends on what the question is asking and what information you are given. :)
Hope this helps!
It is not direct variation because it does not follow the equation
y = slopex
THE points do not make the equation true .