Its about momentum. Momentum (p)=mass(m)xvelocity(v)
So for the first ball P=4x8=32kgm/s
For the second the momentum is zero as it is still.
So overall momentum its 32kgm/s
Momentum has to be conserved
After the collision the momentum of the 4kg ball is 4x4.8=19.2kgm/s
As momentum is conserved 32-19.2=12.8kgm/s remaining
So rearrange for velocity so v=p/m=12.8/1=12.8m/s for the 1kg ball
Answer:
Explanation:
The magnetic field due to straight wire is into the square coil.
As the current in straight wire decreases the magnetic flux in the coil decreases
. The induced magnetic field is into the coil.The induced current is along +y direction
An example of a system with decreasing gravitational potential energy is a ball in free fall.
At its initial height h, the ball has a gravitational potential energy equal to

where m is the ball mass and g is the gravitational acceleration. As the ball falls toward the ground, its height h decreases, and so its gravitational potential energy decreases as well, according to the formula

where h' is the new height of the ball.
I think the correct answer among the choices listed above is option C. Magnetic levitation has been used to innovate transportation. This innovation is commonly known as maglev. It is a new transportation technology where noncontacting vehicles travel above a guideway by magnetic fields.
Answer:
A pre-existing weather disturbance: A hurricane often starts out as a tropical wave.
Warm water: Water at least 26.5 degrees Celsius over a depth of 50 meters powers the storm.
Thunderstorm activity: Thunderstorms turn ocean heat into hurricane fuel.