1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nostrana [21]
3 years ago
8

A 4.0-kilogram ball moving at 8.0 m/s to the right collides with a 1.0-kilogram ball at rest. After the collision, the 4.0-kilog

ram ball moves at 4.8 m/s to the right. What is the velocity of the 1-kilogram ball?
Physics
2 answers:
ELEN [110]3 years ago
7 0

<u>Answer:</u> The velocity of ball having less mass is 12.8 m/s

<u>Explanation:</u>

To calculate the velocity of the ball having less mass after the collision, we use the equation of law of conservation of momentum, which is:

m_1u_1+m_2u_2=m_1v_1+m_2v_2

where,  

m_1 = mass of ball 1 = 4.0 kg

u_1 = Initial velocity of ball 1 = 8.0 m/s

v_1 = Final velocity of ball 1 = 4.8 m/s

m_2 = mass of ball 2 = 1.0 kg

u_2 = Initial velocity of ball 2 = 0 m/s

v_2 = Final velocity of ball 2 = ?

Putting values in above equation, we get:

(4.0\times 8.0)+(1.0\times 0)=(4.0\times 4.8)+(1.0\times v_2)\\\\v_2=\frac{32-19.2}{1}=12.8m/s

Hence, the velocity of ball having less mass is 12.8 m/s

Illusion [34]3 years ago
3 0
Its about momentum. Momentum (p)=mass(m)xvelocity(v)
So for the first ball P=4x8=32kgm/s
For the second the momentum is zero as it is still.
So overall momentum its 32kgm/s
Momentum has to be conserved
After the collision the momentum of the 4kg ball is 4x4.8=19.2kgm/s
As momentum is conserved 32-19.2=12.8kgm/s remaining
So rearrange for velocity so v=p/m=12.8/1=12.8m/s for the 1kg ball 
You might be interested in
When a body of mass 0.25 kg is attached to a vertical massless spring, it is extended 5.0 cm from its unstretched length of 4.0
lora16 [44]

Answer:

d=0.165m

Explanation:

Given

m=0.25kg,x_{1}=5cm*\frac{1m}{100cm}=0.05m,x_{2}=4cm*\frac{1m}{100cm}=0.04m,v=2\frac{rev}{s}

The tension of the spring is

F_{k}=K*x_{1}=m*g

K=\frac{m*g}{x_{1}}

K=\frac{0.25kg*9.8m/s^2}{0.05m}=49N/m

The force in the spring is equal to centripetal force so

F_{c}=\frac{m*v^2}{r}

v=w*r=2\pi*r

But Fc is also

Fc=KxΔr

F_{c}=K*(r-x_{2})

Replacing

m*4\pi^2*r=K*(r-x_{2})

0.25kg*4\pi^2*r=49*(r-0.04m)

r=0.205m

total distance is

d=0.205-0.04=0.165m

3 0
3 years ago
Two cars are moving with velocities 70km/hr and 50km/hr in east and west direction respectively.
viva [34]

Answer:

70 + 50 = 120 km/hr

Explanation:

The driver of either car would see the other car approaching or departing at 120 kph

5 0
3 years ago
You are investigating an elevator accident which happened in a tall building. An elevator in this building is attached to a stro
Advocard [28]

Answer:

a) F = 2250 Ib

b) F = 550 Ib

c) new max force ( F newmax ) = 2850 Ib

Explanation:

A) The force the wall of the elevator shaft exert on the motor if the elevator starts from rest and goes up

max capacity  of elevator = 24000 Ibs

counterweight = 1000 Ibs

To calculate the force (F) :

we first calculate the Tension using this relationship

Counterweight (1000) - T =  ( 1000 / g ) ( g/4 )

Hence T = 750 Ib

next determine F

750 + F - 2400 = 2400 / 4

hence F = 2250 Ib

B ) calculate Tension first

T - 1000 = ( 1000/g ) ( g/4)

T = 1250 Ib

F = 2400 -1250 - 2400/ 4

F = 550 Ib

C ) determine design limit

Max = 2400 * 1.2 = 2880 Ib

750 + new force - 2880 = 2880 / 4

new max force ( F newmax ) = 2850 Ib

8 0
4 years ago
A dog pushes against the front door for 3 seconds with a force of 88 N. What
kirill [66]

264Ns

Explanation:

Given parameters:

Time of the push = 3s

Force of push = 88N

Unknown:

Impulse = ?

Solution:

Impulse is defined as the change in momentum of a body when force acts on it.

  Impulse = Force x time

Inputting the parameters:

    Impulse = 88 x 3 = 264Ns

Learn more:

Momentum brainly.com/question/9484203

#learnwithBrainly

5 0
3 years ago
Water (density = 1x10^3 kg/m^3) flows at 15.5 m/s through a pipe with radius 0.040 m. The pipe goes up to the second floor of th
RUDIKE [14]

Answer:

The speed of the water flow in the pipe on the second floor is approximately 13.1 meters per second.

Explanation:

By assuming that fluid is incompressible and there are no heat and work interaction through the line of current corresponding to the pipe, we can calculate the speed of the water floor in the pipe on the second floor by Bernoulli's Principle, whose model is:

P_{1} + \frac{\rho\cdot v_{1}^{2}}{2}+\rho\cdot g\cdot z_{1} = P_{2} + \frac{\rho\cdot v_{2}^{2}}{2}+\rho\cdot g\cdot z_{2} (1)

Where:

P_{1}, P_{2} - Pressures of the water on the first and second floors, measured in pascals.

\rho - Density of water, measured in kilograms per cubic meter.

v_{1}, v_{2} - Speed of the water on the first and second floors, measured in meters per second.

z_{1}, z_{2} - Heights of the water on the first and second floors, measured in meters.

Now we clear the final speed of the water flow:

\frac{\rho\cdot v_{2}^{2}}{2} = P_{1}-P_{2}+\rho \cdot \left[\frac{v_{1}^{2}}{2}+g\cdot (z_{1}-z_{2}) \right]

\rho\cdot v_{2}^{2} = 2\cdot (P_{1}-P_{2})+\rho\cdot [v_{1}^{2}+2\cdot g\cdot (z_{1}-z_{2})]

v_{2}^{2}= \frac{2\cdot (P_{1}-P_{2})}{\rho}+v_{1}^{2}+2\cdot g\cdot (z_{1}-z_{2})

v_{2} = \sqrt{\frac{2\cdot (P_{1}-P_{2})}{\rho}+v_{1}^{2}+2\cdot g\cdot (z_{1}-z_{2}) } (2)

If we know that P_{1}-P_{2} = 0\,Pa, \rho=1000\,\frac{kg}{m^{3}}, v_{1} = 15.5\,\frac{m}{s}, g = 9.807\,\frac{m}{s^{2}} and z_{1}-z_{2} = -3.5\,m, then the speed of the water flow in the pipe on the second floor is:

v_{2}=\sqrt{\left(15.5\,\frac{m}{s} \right)^{2}+2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (-3.5\,m)}

v_{2} \approx 13.100\,\frac{m}{s}

The speed of the water flow in the pipe on the second floor is approximately 13.1 meters per second.

4 0
3 years ago
Other questions:
  • When forming a bond, an atom that has 3 electrons in its second shell and a filled first shell will?
    9·1 answer
  • What is the speed of sound at sea level?
    13·1 answer
  • Consider the following neutral electron configurations in which n has a constant value. Which configuration would belong to the
    9·2 answers
  • Suppose a tank filled with water has a liquid column with a height of 19 meter. If the area is 2 square meters 2m squared, what’
    5·1 answer
  • According to Newton's third law of motion, which are equal
    13·1 answer
  • The radio waves of a particular AM radio station vibrate 680,000 times per second. What is the wavelength of the wave?
    6·1 answer
  • What Kinetic energy is exactly equal to Gravitational Potential Energy why is height halfway between the maximum height?
    12·1 answer
  • A person pushes a 25kg box across a horizontal frictionless surface with a force of 200 Newtons.
    6·1 answer
  • This mathematical model describes the changes that occur in a sample of
    6·1 answer
  • Danny Diver weighs 500 N and steps off a diving board 10 m above the water. Danny hits the water with kinetic energy of
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!