So,
#1:
![n \geq 3 \frac{11}{16} + 4 \frac{1}{2}](https://tex.z-dn.net/?f=n%20%20%5Cgeq%203%20%5Cfrac%7B11%7D%7B16%7D%20%2B%204%20%5Cfrac%7B1%7D%7B2%7D%20)
Convert to like improper fractions.
![n \geq \frac{59}{16} + \frac{72}{16}](https://tex.z-dn.net/?f=n%20%20%5Cgeq%20%20%5Cfrac%7B59%7D%7B16%7D%20%2B%20%20%5Cfrac%7B72%7D%7B16%7D%20)
Add.
![n \geq \frac{131}{16}\ or\ 8 \frac{3}{16}](https://tex.z-dn.net/?f=n%20%20%5Cgeq%20%20%5Cfrac%7B131%7D%7B16%7D%5C%20or%5C%208%20%5Cfrac%7B3%7D%7B16%7D%20)
So, one solution could be
![8 \frac{3}{16}](https://tex.z-dn.net/?f=8%20%5Cfrac%7B3%7D%7B16%7D%20)
.
Another solution could by 9. There is also 10, 11, 12, etc., and all numbers in between.
#2:
![k \ \textless \ 6 \frac{2}{5} * 15](https://tex.z-dn.net/?f=k%20%5C%20%5Ctextless%20%5C%20%206%20%20%5Cfrac%7B2%7D%7B5%7D%20%2A%2015)
Convert into improper fraction form.
![k \ \textless \ \frac{32}{5} * 15](https://tex.z-dn.net/?f=k%20%5C%20%5Ctextless%20%5C%20%5Cfrac%7B32%7D%7B5%7D%20%2A%2015)
Multiply.
![\frac{(2^5)(3)(5)}{5}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%282%5E5%29%283%29%285%29%7D%7B5%7D%20)
Cross-cancel, and we have our final result.
![(2^5)(3) = 96](https://tex.z-dn.net/?f=%282%5E5%29%283%29%20%3D%2096)
k < 96
96 is not a solution.
95 is a solution.
So is 94, 93, 92, etc, and all numbers in between.