In a hand of 5 cards, you want 4 of them to be of the same rank, and the fifth can be any of the remaining 48 cards. So if the rank of the 4-of-a-kind is fixed, there are
possible hands. To account for any choice of rank, we choose 1 of the 13 possible ranks and multiply this count by
. So there are 624 possible hands containing a 4-of-a-kind. Hence A occurs with probability

There are 4 aces in the deck. If exactly 1 occurs in the hand, the remaining 4 cards can be any of the remaining 48 non-ace cards, contributing
possible hands. Exactly 2 aces are drawn in
hands. And so on. This gives a total of

possible hands containing at least 1 ace, and hence B occurs with probability

The product of these probability is approximately 0.000082.
A and B are independent if the probability of both events occurring simultaneously is the same as the above probability, i.e.
. This happens if
- the hand has 4 aces and 1 non-ace, or
- the hand has a non-ace 4-of-a-kind and 1 ace
The above "sub-events" are mutually exclusive and share no overlap. There are 48 possible non-aces to choose from, so the first sub-event consists of 48 possible hands. There are 12 non-ace 4-of-a-kinds and 4 choices of ace for the fifth card, so the second sub-event has a total of 12*4 = 48 possible hands. So
consists of 96 possible hands, which occurs with probability

and so the events A and B are NOT independent.
Answer:
B is your answer
Step-by-step explanation:
Answer:
what exactly is the question to the problem ? it looks like it's already solved ? are you suppose to find something or ?
Answer:
=5w3+8w2−10w+2
Step-by-step explanation:
Simplify
1
Distribute
2
(
2
+
3
−
5
)
+
3
3
+
2
(
2
+
1
)
2
3
+
6
2
−
1
0
+
3
3
+
2
(
2
+
1
)
2
Distribute
2
3
+
6
2
−
1
0
+
3
3
+
2
(
2
+
1
)
2
3
+
6
2
−
1
0
+
3
3
+
2
2
+
2
3
Combine like terms
2
3
+
6
2
−
1
0
+
3
3
+
2
2
+
2
5
3
+
6
2
−
1
0
+
2
2
+
2
4
Combine like terms
5
3
+
6
2
−
1
0
+
2
2
+
2
5
3
+
8
2
−
1
0
+
2
sorry if it don't make sense ;c
Answer:
I think it would be b
Step-by-step explanation:
im sorry if im wrong im not good with this stuff :c