1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oee [108]
3 years ago
10

An artist is arranging tiles in rows to decorate a wall. Each new row has 2 fewer tiles than the row below it. If the first row

has 23 tiles,how many tiles will be in the seventh row
Mathematics
2 answers:
Evgen [1.6K]3 years ago
8 0
11 tiles will be in the seventh row

dolphi86 [110]3 years ago
6 0
22, 20, 18, 16, 14, 12, 10 ... so 10
You might be interested in
Find the average rate of change of f(x)=2x^2-7x from x=2 to x=6
scoundrel [369]

Answer:

Step-by-step explanation:

The average rate of change of a function f between a and b (a< b) is :

R =[f(b)-f(a)] ÷ (a-b)

●●●●●●●●●●●●●●●●●●●●●●●●

Let R be the average rate of change of this function

f(6) = 2×6^2 - 7×6 = 72-42 = 30

f(2) = 2×2^2 - 7×2 = 8-14 = -6

R = [f(6) - f(2)]÷ (6-2)

R = [30-(-6)] ÷ 4

R = -36/4

R = -9

■■■■■■■■■■■■■■■■■■■■■■■■■

The average rate of change of this function is -9

8 0
3 years ago
Read 2 more answers
Help ASAP!!!!!!!!!!!! Show your work!!!!!!!!!!!
Mariulka [41]

Answer:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

Step-by-step explanation:

Solve for x:

5 x^4 - 7 x^3 - 5 x^2 + 5 x + 1 = 0

Eliminate the cubic term by substituting y = x - 7/20:

1 + 5 (y + 7/20) - 5 (y + 7/20)^2 - 7 (y + 7/20)^3 + 5 (y + 7/20)^4 = 0

Expand out terms of the left hand side:

5 y^4 - (347 y^2)/40 - (43 y)/200 + 61197/32000 = 0

Divide both sides by 5:

y^4 - (347 y^2)/200 - (43 y)/1000 + 61197/160000 = 0

Add (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000 to both sides:

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (y^2 + sqrt(61197)/400)^2:

(y^2 + sqrt(61197)/400)^2 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

Add 2 (y^2 + sqrt(61197)/400) λ + λ^2 to both sides:

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (y^2 + sqrt(61197)/400 + λ)^2:

(y^2 + sqrt(61197)/400 + λ)^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (2 λ + 347/200 + sqrt(61197)/200) y^2 + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2:

(y^2 + sqrt(61197)/400 + λ)^2 = y^2 (2 λ + 347/200 + sqrt(61197)/200) + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2 + (4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000)/(4 (2 λ + 347/200 + sqrt(61197)/200))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000 = (8000000 λ^3 + 60000 sqrt(61197) λ^2 + 6940000 λ^2 + 34700 sqrt(61197) λ + 6119700 λ - 1849)/1000000 = 0.

Thus the root λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2

Take the square root of both sides:

y^2 + sqrt(61197)/400 + λ = y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)) or y^2 + sqrt(61197)/400 + λ = -y sqrt(2 λ + 347/200 + sqrt(61197)/200) - 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200))

Solve using the quadratic formula:

y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) + sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197))) - sqrt(2) sqrt(400 λ + 347 + sqrt(61197))) or y = 1/40 (-sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) where λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3))

Substitute λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) and approximate:

y = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x - 7/20 = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x - 7/20 = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x - 7/20 = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or x = 0.841952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x - 7/20 = 1.23204

Add 7/20 to both sides:

Answer: x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

3 0
3 years ago
O NEED HELP QUICK!!!
Wittaler [7]

Answer:

the third one is your answer

Step-by-step explanation:

5 0
3 years ago
A 12-meter ladder leans against a building forming a 30° angle with the building.
KatRina [158]

Answer:

will show you two (2) ways to solve this problem.

A diagram is needed to see what is going on....

 

Without loss of generality (WLOG)

The wall is on the right. The ladder leans against the wall

with a POSITIVE slope, from SW to NE (quadrant 3 to quadrant 1).

The measure from the bottom of the ladder to the wall is 6.

 

 

Option 1:

 

The ladder, ground and wall form a right triangle.

 

The hypotenuse (ladder) is 14 feet.

 

 The bottom of the ladder is 6 feet from the wall,

  so the base of this right triangle is 6 feet.

 

The top of the ladder to the ground represents

the missing leg of the right triangle.

 

The pythagorean theorem applies, which says

 6^2 + h^2 = 14^2   where h is the height

                                 of the top of the ladder to the ground

 

36 + h^2 = 196

 

 h^2 = 196 - 36

 

h^2  = 160

 

h = sqrt(160)

 

   = sqrt(16 * 10)

 

    = sqrt(16)* sqrt(10)

 

    = 4*sqrt(10) <--- exact answer

 

    = 4 * 3.16227766016838....

 

     = 12.64911....

 

    12.65 <--- rounded to 2 digits as directed

 

----------------------------------------------

Option #2: using trig

 

With respect to the angle formed by the bottom of the

ladder with the ground

  cos T = 6/14 = 3/7  

 T = inverse-cosine(3/7) = 64.623006647 degrees

 

 sin(64.623006647) = h/14

 

 h = 14*sin(64.62300647) = 12.6491106 <--- same answer                        

hope this helps

Step-by-step explanation:

5 0
2 years ago
You roll a 6 sided dice what is the probability of rolling a number greater than two and then rolling a number less than three
Alexandra [31]

First answer is 4 chances and second answer is 2 chances

5 0
3 years ago
Other questions:
  • Divide the following polynomial, then place the answer in the proper location on the grid.
    9·2 answers
  • Q #3. Ifetify the mapping diagram that represents the relation and determine whether the relation is function..{(- 3,-6),(-1,-6)
    5·1 answer
  • Find the area of the composite figure
    11·1 answer
  • What is the difference between a number a and 6 written in a expression
    14·1 answer
  • Solve the proportion<br> 16/50 = x/156.25
    12·2 answers
  • In a translation, the line segments that connect each point on the preimage to the corresponding point on the image are not only
    9·2 answers
  • Please answer this for me x+y=y +x
    15·1 answer
  • Find the value of x.
    5·2 answers
  • Which graph shows the solution set of the inequality 2.9(x+8) &lt;26.1?
    9·2 answers
  • Instructions below in the image
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!