1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8_murik_8 [283]
3 years ago
8

Please solve this and show how you did it. Thanks!!!

Mathematics
1 answer:
djyliett [7]3 years ago
4 0
Simplify both sides of the inequality
-2/5x - 9< 9/10
Add 9 to both sides
-2/5x<99/10
Multiply each side by 5/-2
Answer: x> -99/4
You might be interested in
HELP DUE SOON Which is the better buy?
REY [17]
The 40
Is better . It’s like your paying 1 for it and the other one maybe like 1.50 or so
5 0
3 years ago
Read 2 more answers
Which equation is equivalent to log^x36=2?
Dennis_Churaev [7]

The equation which is equivalent to \log _{x} 36=2 is x^{2}=36 or x = 6 (\log _{6} 36=2).

<u>Step-by-step explanation:</u>

Given Equation:

           \log _{x} 36=2

As we know, in terms of logarithmic rules, when b is raised to the power of y is equal x:

           b^{y}=a

Then, the base b logarithm of x is equal to y

           \log _{b}(x)=y

Now, use the logarithmic rule for the given equation by comparing with above equation. We get b = x, y = 2, and x = 36. Apply this in equation,

            b^{y}=a

            x^{2}=36

When taking out the squares on both sides, we get x = 6. Hence, the given equation can be written as \log _{6} 36=2

8 0
3 years ago
Read 2 more answers
A parallelogram has one angle that measures 118°. What are the measures of the other three angles in the parallelogram?
MariettaO [177]

Step-by-step explanation:

<em>Given</em>

<em>We </em><em>know </em><em>that </em><em>in </em><em>a </em><em>parallelogram </em><em>opposite </em><em>angles </em><em>are </em><em>equal</em><em>. </em><em>So </em>

<em>1st </em><em>and </em><em>3rd </em><em>angles </em><em>=</em><em> </em><em>1</em><em>1</em><em>8</em><em>°</em>

<em>Let </em><em>2nd </em><em>and </em><em>4th </em><em>angles </em><em>=</em><em> </em><em>x</em>

<em>Now</em>

<em>1</em><em>1</em><em>8</em><em>°</em><em> </em><em>+</em><em> </em><em>1</em><em>1</em><em>8</em><em>°</em><em> </em><em>+</em><em> </em><em>x </em><em>+</em><em> </em><em>x </em><em>=</em><em> </em><em>3</em><em>6</em><em>0</em><em>°</em><em> </em><em>(</em><em> </em><em>Being </em><em>sum </em><em>of </em><em>angles </em><em>of </em><em>parallelogram</em><em>) </em>

<em>2</em><em>3</em><em>6</em><em>°</em><em> </em><em>+</em><em> </em><em>2x </em><em>=</em><em> </em><em>3</em><em>6</em><em>0</em><em>°</em>

<em>2x </em><em>=</em><em> </em><em>3</em><em>6</em><em>0</em><em>°</em><em> </em><em>-</em><em> </em><em>2</em><em>3</em><em>6</em><em>°</em>

<em>2x </em><em>=</em><em> </em><em>1</em><em>2</em><em>4</em><em>°</em>

<em>Therefore </em><em>x </em><em>=</em><em> </em><em>6</em><em>2</em><em>°</em>

<em>Now </em><em>the </em><em>measure </em><em>of </em><em>other </em><em>all </em><em>angles </em>

<em>118</em><em>°</em><em> </em><em>,</em><em> </em><em>6</em><em>2</em><em>°</em><em> </em><em>,</em><em> </em><em>1</em><em>1</em><em>8</em><em>°</em><em>,</em><em> </em><em>6</em><em>2</em><em>°</em>

3 0
3 years ago
Given: QR I PT and ZQPR = ZSTR
Rina8888 [55]

Answer:

\triangle PQR \sim \triangle TSR

Step-by-step explanation:

Given :

QR⊥PT

\angle QPR = \angle STR

To Prove : \triangle PQR \sim \triangle TSR

Solution:

Statements                                            Reasons

QR⊥PT                                                Given

∠QRP and ∠SRT are right angles       Def of perpendicular

∠QPR≅∠STR                                     Given

∠QRP = ∠SRT                                    All right angles are equal

ΔPQR≈ΔTSR                                     AA similarity

Hence  \triangle PQR \sim \triangle TSR

5 0
4 years ago
Two taxi companies in a city only charge by mileage and do not charge an initial fee. If Taxi 1 charges $3.00 per miles and Taxi
Bumek [7]

Answer:

A 12 mile ride in Taxi 1 costs $36.00, and in Taxi 2 it costs $34.20.

Step-by-step explanation:

Given that:

Charges of taxi 1 = $3.00 per mile

Charges of taxi 2 = $1.77 per kilometer

1 mile = 1.61 kilometers

To find:

Cost of a 12 miles ride for taxi 1 and taxi 2.

Solution:

Let us first convert the charges of each taxi to per mile.

Taxi 1 charges are already given in per mile.

Charges for 1 mile = $3

Charges for 12 miles = 3 \times 12 = <em>$36</em>

Taxi 2 charges = 1.77 \times 1.61 = $2.85 per mile

Charges for 12 miles = 2.85 \times 12 = <em>$34.20</em>

<em></em>

Therefore, the answer is:

<em>A 12 mile ride in Taxi 1 costs $36.00, and in Taxi 2 it costs $34.20.</em>

8 0
3 years ago
Other questions:
  • What is the slope of a line that passes through 2,-8 and -2,2
    5·1 answer
  • You have money in an account at 6% interest, compounded monthly. To the nearest year, how long
    11·1 answer
  • Whats the common denominator for 3/8 and 4/5
    6·2 answers
  • 93+(68+7) common core
    11·1 answer
  • PLEASEEE HELP!!!!
    9·2 answers
  • Evaluate. 9.75 + 4.625 + (-9.75) + 2.6=?
    15·2 answers
  • Complete the equation of the line whose y- intercept is (0,5) and slope is -9
    13·1 answer
  • Emma is training for a 10-kilometer race. She wants to beat her last 10-kilometer time, which was 1 hour 10 minutes. Emma has al
    14·1 answer
  • Mrs. Morales wrote a test with 16 questions covering spelling and vocabulary. Spelling questions (x) are
    14·1 answer
  • Please help with this question
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!